Modeling Dynamic Functional Neuroimaging Data Using Structural Equation Modeling

The aims of this study were to present a method for developing a path analytic network model using data acquired from positron emission tomography. Regions of interest within the human brain were identified through quantitative activation likelihood estimation meta-analysis. Using this information, a “true” or population path model was then developed using Bayesian structural equation modeling. To evaluate the impact of sample size on parameter estimation bias, proportion of parameter replication coverage, and statistical power, a 2 group (clinical/control) × 6 (sample size: N = 10, N = 15, N = 20, N = 25, N = 50, N = 100) Markov chain Monte Carlo study was conducted. Results indicate that using a sample size of less than N = 15 per group will produce parameter estimates exhibiting bias greater than 5% and statistical power below .80.

[1]  James L. Arbuckle,et al.  Full Information Estimation in the Presence of Incomplete Data , 1996 .

[2]  S. Bookheimer,et al.  Regional cerebral blood flow during object naming and word reading , 1995 .

[3]  P. T. Fox,et al.  Positron emission tomographic studies of the cortical anatomy of single-word processing , 1988, Nature.

[4]  Angela M. Uecker,et al.  ALE meta‐analysis: Controlling the false discovery rate and performing statistical contrasts , 2005, Human brain mapping.

[5]  G. A. Marcoulides,et al.  Advanced structural equation modeling : issues and techniques , 1996 .

[6]  R. Ingham,et al.  A PET study of the neural systems of stuttering , 1996, Nature.

[7]  R. Bagozzi,et al.  A General Approach for Representing Constructs in Organizational Research , 1998 .

[8]  Simon Jackman,et al.  Estimation and Inference via Bayesian Simulation: An Introduction to Markov Chain Monte Carlo , 2000 .

[9]  Jieun Kim,et al.  Effects of Verbal Working Memory Load on Corticocortical Connectivity Modeled by Path Analysis of Functional Magnetic Resonance Imaging Data , 2002, NeuroImage.

[10]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[11]  Bertrand Audoin,et al.  Modulation of effective connectivity inside the working memory network in patients at the earliest stage of multiple sclerosis , 2005, NeuroImage.

[12]  Karl J. Friston,et al.  Spatial registration and normalization of images , 1995 .

[13]  Snigdhansu Chatterjee,et al.  Structural Equation Modeling, A Bayesian Approach , 2008, Technometrics.

[14]  Kathryn M. McMillan,et al.  N‐back working memory paradigm: A meta‐analysis of normative functional neuroimaging studies , 2005, Human brain mapping.

[15]  Leslie G. Ungerleider,et al.  Network analysis of cortical visual pathways mapped with PET , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[16]  Karl J. Friston,et al.  The Relationship between Global and Local Changes in PET Scans , 1990, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[17]  E. Bullmore,et al.  How Good Is Good Enough in Path Analysis of fMRI Data? , 2000, NeuroImage.

[18]  Jeff Gill,et al.  Bayesian Methods : A Social and Behavioral Sciences Approach , 2002 .

[19]  Scott Peltier,et al.  Connectivity exploration with structural equation modeling: an fMRI study of bimanual motor coordination , 2005, NeuroImage.

[20]  Guinevere F. Eden,et al.  Meta-Analysis of the Functional Neuroanatomy of Single-Word Reading: Method and Validation , 2002, NeuroImage.

[21]  Mariko Osaka,et al.  Cooperation of the anterior cingulate cortex and dorsolateral prefrontal cortex for attention shifting , 2004, NeuroImage.

[22]  Richard S. J. Frackowiak,et al.  Brain activity during reading. The effects of exposure duration and task. , 1994, Brain : a journal of neurology.

[23]  Karl J. Friston,et al.  Functional ontologies for cognition: The systematic definition of structure and function , 2005, Cognitive neuropsychology.

[24]  A. Raftery,et al.  How Many Iterations in the Gibbs Sampler , 1991 .

[25]  F. Gonzalez-Lima,et al.  Structural equation modeling and its application to network analysis in functional brain imaging , 1994 .

[26]  M. Mintun,et al.  Noninvasive functional brain mapping by change-distribution analysis of averaged PET images of H215O tissue activity. , 1989, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[27]  M. Mintun,et al.  Enhanced Detection of Focal Brain Responses Using Intersubject Averaging and Change-Distribution Analysis of Subtracted PET Images , 1988, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[28]  R. P. McDonald,et al.  Path Analysis with Composite Variables. , 1996, Multivariate behavioral research.

[29]  Kamel Jedidi,et al.  Bayesian factor analysis for multilevel binary observations , 2000 .

[30]  M. Mintun,et al.  Brain blood flow measured with intravenous H2(15)O. II. Implementation and validation. , 1983, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[31]  Suzanne T. Witt,et al.  Self-paced working memory: Validation of verbal variations of the n-back paradigm , 2007, Brain Research.

[32]  Xin-Yuan Song,et al.  Bayesian model comparison of nonlinear structural equation models with missing continuous and ordinal categorical data. , 2004, The British journal of mathematical and statistical psychology.

[33]  J. H. Steiger Structural Model Evaluation and Modification: An Interval Estimation Approach. , 1990, Multivariate behavioral research.

[34]  Ingrid S. Johnsrude,et al.  Can Meaningful Effective Connectivities Be Obtained between Auditory Cortical Regions? , 2001, NeuroImage.

[35]  Karl J. Friston,et al.  Analysis of fMRI Time-Series Revisited , 1995, NeuroImage.

[36]  D. Dunson,et al.  Bayesian latent variable models for clustered mixed outcomes , 2000 .

[37]  Karl J. Friston,et al.  Characterising brain images with the general linear model , 1997 .

[38]  Karl J. Friston,et al.  Spatial transformation of images , 1997 .

[39]  L. Parsons,et al.  Location-Probability Profiles for the Mouth Region of Human Primary Motor–Sensory Cortex: Model and Validation , 2001, NeuroImage.

[40]  A. McIntosh,et al.  Structural modeling of functional neural pathways mapped with 2-deoxyglucose: effects of acoustic startle habituation on the auditory system , 1991, Brain Research.

[41]  M. Mintun,et al.  A Noninvasive Approach to Quantitative Functional Brain Mapping with H215O and Positron Emission Tomography , 1984, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[42]  Sik-Yum Lee,et al.  Structural equation modelling: A Bayesian approach. , 2007 .

[43]  Jürgen Baumert,et al.  Modeling longitudinal and multilevel data , 2000 .

[44]  Kathryn M. McMillan,et al.  A comparison of label‐based review and ALE meta‐analysis in the Stroop task , 2005, Human brain mapping.

[45]  R. Ingham,et al.  Stuttered and fluent speech production: An ALE meta‐analysis of functional neuroimaging studies , 2005, Human brain mapping.

[46]  W. Wothke Longitudinal and multigroup modeling with missing data. , 2000 .

[47]  S. Petersen,et al.  Neuroimaging studies of word reading. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[48]  J. M. Ollinger,et al.  Positron Emission Tomography , 2018, Handbook of Small Animal Imaging.

[49]  Kanti V. Mardia,et al.  The effect of nonnormality on some multivariate tests and robustness to nonnormality in the linear model , 1971 .

[50]  M. Torrens Co-Planar Stereotaxic Atlas of the Human Brain—3-Dimensional Proportional System: An Approach to Cerebral Imaging, J. Talairach, P. Tournoux. Georg Thieme Verlag, New York (1988), 122 pp., 130 figs. DM 268 , 1990 .

[51]  J. Mazziotta,et al.  Rapid Automated Algorithm for Aligning and Reslicing PET Images , 1992, Journal of computer assisted tomography.

[52]  Jack L. Lancaster,et al.  A modality‐independent approach to spatial normalization of tomographic images of the human brain , 1995 .

[53]  Angela R Laird,et al.  Brainmap taxonomy of experimental design: Description and evaluation , 2005, Human brain mapping.

[54]  A. Meyer-Lindenberg,et al.  Interindividual differences in functional interactions among prefrontal, parietal and parahippocampal regions during working memory. , 2003, Cerebral cortex.

[55]  R. Scheines,et al.  Bayesian estimation and testing of structural equation models , 1999 .

[56]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.