Probing entanglement in adiabatic quantum optimization with trapped ions

Adiabatic quantum optimization has been proposed as a route to solve NP-complete problems, with a possible quantum speedup compared to classical algorithms. However, the precise role of quantum effects, such as entanglement, in these optimization protocols is still unclear. We propose a setup of cold trapped ions that allows one to quantitatively characterize, in a controlled experiment, the interplay of entanglement, decoherence, and non-adiabaticity in adiabatic quantum optimization. We show that, in this way, a broad class of NP-complete problems becomes accessible for quantum simulations, including the knapsack problem, number partitioning, and instances of the max-cut problem. Moreover, a general theoretical study reveals correlations of the success probability with entanglement at the end of the protocol. From exact numerical simulations for small systems and linear ramps, however, we find no substantial correlations with the entanglement during the optimization. For the final state, we derive analytically a universal upper bound for the success probability as a function of entanglement, which can be measured in experiment. The proposed trapped-ion setups and the presented study of entanglement address pertinent questions of adiabatic quantum optimization, which may be of general interest across experimental platforms.

[1]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[2]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[3]  K. Binder,et al.  Spin glasses: Experimental facts, theoretical concepts, and open questions , 1986 .

[4]  T. Park,et al.  Unitary quantum time evolution by iterative Lanczos reduction , 1986 .

[5]  Moore,et al.  Spin squeezing and reduced quantum noise in spectroscopy. , 1992, Physical review. A, Atomic, molecular, and optical physics.

[6]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[7]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[8]  F. Mintert,et al.  Ion-trap quantum logic using long-wavelength radiation. , 2001, Physical review letters.

[9]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[10]  N. Cerf,et al.  Quantum search by local adiabatic evolution , 2001, quant-ph/0107015.

[11]  G. Vidal,et al.  Computable measure of entanglement , 2001, quant-ph/0102117.

[12]  R. Car,et al.  Theory of Quantum Annealing of an Ising Spin Glass , 2002, Science.

[13]  T. Hogg,et al.  Experimental implementation of an adiabatic quantum optimization algorithm. , 2003, Physical review letters.

[14]  J. Cirac,et al.  Effective quantum spin systems with trapped ions. , 2004, Physical Review Letters.

[15]  David Pisinger,et al.  Where are the hard knapsack problems? , 2005, Comput. Oper. Res..

[16]  M. Plenio Logarithmic negativity: a full entanglement monotone that is not convex. , 2005, Physical review letters.

[17]  Lorenzo Stella,et al.  Optimization through quantum annealing: theory and some applications , 2006 .

[18]  T. Schaetz,et al.  Simulating a quantum magnet with trapped ions , 2008 .

[19]  P. Love,et al.  Thermally assisted adiabatic quantum computation. , 2006, Physical review letters.

[20]  J. Chiaverini,et al.  Laserless trapped-ion quantum simulations without spontaneous scattering using microtrap arrays , 2007, 0711.0233.

[21]  Dietrich Leibfried,et al.  Optimal surface-electrode trap lattices for quantum simulation with trapped ions. , 2009, Physical review letters.

[22]  M. Johanning,et al.  Quantum simulations with cold trapped ions , 2009, 0905.0118.

[23]  D. Bruß,et al.  Multipartite entanglement detection via structure factors. , 2009, Physical review letters.

[24]  L. Pezzè,et al.  Entanglement, nonlinear dynamics, and the heisenberg limit. , 2007, Physical review letters.

[25]  Jérémie Roland,et al.  Anderson localization makes adiabatic quantum optimization fail , 2009, Proceedings of the National Academy of Sciences.

[26]  M B Plenio,et al.  Measuring entanglement in condensed matter systems. , 2010, Physical review letters.

[27]  B. Lanyon,et al.  Universal Digital Quantum Simulation with Trapped Ions , 2011, Science.

[28]  Frustrated quantum spin models with cold Coulomb crystals. , 2011, Physical review letters.

[29]  A. Polkovnikov Microscopic diagonal entropy and its connection to basic thermodynamic relations , 2008, 0806.2862.

[30]  J. Freericks,et al.  Intrinsic phonon effects on analog quantum simulators with ultracold trapped ions , 2011, 1112.2715.

[31]  M. W. Johnson,et al.  Quantum annealing with manufactured spins , 2011, Nature.

[32]  A. Sanpera,et al.  Detection of Entanglement in Ultracold Lattice Gases , 2011, 1105.2446.

[33]  C. Monroe,et al.  Quantum simulation of spin models on an arbitrary lattice with trapped ions , 2012, 1201.0776.

[34]  F. Schmidt-Kaler,et al.  Quantum magnetism of spin-ladder compounds with trapped-ion crystals , 2012, 1205.0341.

[35]  Michael J. Biercuk,et al.  Engineered two-dimensional Ising interactions in a trapped-ion quantum simulator with hundreds of spins , 2012, Nature.

[36]  Tobias Schaetz,et al.  Experimental quantum simulations of many-body physics with trapped ions , 2012, Reports on progress in physics. Physical Society.

[37]  Augusto Smerzi,et al.  Fisher information and multiparticle entanglement , 2010, 1006.4366.

[38]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[39]  G. Rose,et al.  Finding low-energy conformations of lattice protein models by quantum annealing , 2012, Scientific Reports.

[40]  M. Johanning,et al.  Designer spin pseudomolecule implemented with trapped ions in a magnetic gradient. , 2011, Physical review letters.

[41]  Daniel A. Lidar,et al.  Experimental signature of programmable quantum annealing , 2012, Nature Communications.

[42]  F. Fressin,et al.  Emergence and Frustration of Magnetism with Variable-Range Interactions in a Quantum Simulator , 2012, Science.

[43]  Y. Ye,et al.  Discrete geometry and optimization , 2013 .

[44]  Aaron C. E. Lee,et al.  Quantum catalysis of magnetic phase transitions in a quantum simulator. , 2013, Physical review letters.

[45]  C. Monroe,et al.  Scaling the Ion Trap Quantum Processor , 2013, Science.

[46]  Peter Zoller,et al.  Quantum Simulation of a Lattice Schwinger Model in a Chain of Trapped Ions , 2013, 1306.2162.

[47]  Franco Nori,et al.  QuTiP 2: A Python framework for the dynamics of open quantum systems , 2012, Comput. Phys. Commun..

[48]  Fabián A. Chudak,et al.  Experimental determination of Ramsey numbers. , 2012, Physical Review Letters.

[49]  M. Lewenstein,et al.  Quantum control of spin-correlations in ultracold lattice gases , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[50]  I. Hen How fast can quantum annealers count? , 2013, 1301.4956.

[51]  Peter Zoller,et al.  Observation of entanglement propagation in a quantum many , 2014 .

[52]  Non-local propagation of correlations in long-range interacting quantum systems , 2014, 1401.5088.

[53]  M. W. Johnson,et al.  Entanglement in a Quantum Annealing Processor , 2014, 1401.3500.

[54]  Firas Hamze,et al.  Glassy Chimeras could be blind to quantum speedup: Designing better benchmarks for quantum annealing machines , 2014, 1401.1546.

[55]  S. Giampaolo,et al.  Adiabatic quantum simulation with a segmented ion trap: Application to long-distance entanglement in quantum spin systems , 2013, 1304.0261.

[56]  H. Ball,et al.  Experimental bath engineering for quantitative studies of quantum control , 2014, 1403.4632.

[57]  Daniel A. Lidar,et al.  Evidence for quantum annealing with more than one hundred qubits , 2013, Nature Physics.

[58]  Andrew Lucas,et al.  Ising formulations of many NP problems , 2013, Front. Physics.

[59]  Daniel A. Lidar,et al.  Defining and detecting quantum speedup , 2014, Science.

[60]  E. Knill,et al.  Tunable spin–spin interactions and entanglement of ions in separate potential wells , 2014, Nature.

[61]  Gian Giacomo Guerreschi,et al.  Dimensionality reduction for adiabatic quantum optimizers: Beyond symmetry exploitation , 2014 .

[62]  M. Heyl,et al.  Many-body localization and quantum ergodicity in disordered long-range Ising models , 2014, 1410.1491.

[63]  M. Troyer,et al.  Quantum versus classical annealing of Ising spin glasses , 2014, Science.

[64]  Diego Porras,et al.  Hidden frustrated interactions and quantum annealing in trapped-ion spin-phonon chains , 2014, 1406.5094.

[65]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.