Topological characteristics of local atomic arrangements at crystalline-amorphous structural transition in graphite

Quasi-continuous structural transformation from the crystalline to amorphous state takes place in graphite during ball-milling. The quantitative characteristics of a short- and a medium-range orders in carbon nanomaterials structure are determined by a combined application of X-ray diffraction analysis, reverse Monte Carlo modeling and Voronoi diagram method. High resolution TEM images revealed formation of globular carbon materials having onion-like structure. The Voronoi polyhedra (VP) constructed for simulated atomic configurations of the ball-milled graphite have an extraordinary variety in their topological and metric characteristics and contain a lot of 5-fold faces. The analysis of VP sphericity coefficient Ksph enables a conclusion about the change of the local atomic arrangement in a structure of ball-milled carbon from graphite- to diamond-like. The sphericity coefficient is proposed to be as a parameter of the topological order to quantitative estimation of disordering degree in amorphous structures.

[1]  Franziska Hoffmann,et al.  Spatial Tessellations Concepts And Applications Of Voronoi Diagrams , 2016 .

[2]  J. Tuček Carbon Nanostructures , 2015 .

[3]  A. Rud,et al.  Quantitative analysis of the local atomic structure in disordered carbon , 2014 .

[4]  J. Eckert,et al.  Atomic structure and magnetic properties of Fe–Nb–B metallic glasses , 2014 .

[5]  I. K. Snook,et al.  HRMC_2.0: Hybrid Reverse Monte Carlo method with silicon, carbon and germanium potentials , 2013, Comput. Phys. Commun..

[6]  V. Lad’yanov,et al.  Structure Transformation in Fullerenes C60 at High Temperature Treatment , 2013 .

[7]  Y. Chen,et al.  Disorder in ball-milled graphite revealed by Raman spectroscopy , 2013 .

[8]  J. Eckert,et al.  Local atomic arrangements and their topology in Ni–Zr and Cu–Zr glassy and crystalline alloys , 2013 .

[9]  F. Shoji,et al.  Fine structure analysis of spherical carbon particles produced in a methane plasma , 2012 .

[10]  A. P. Terzyk,et al.  Structural properties of amorphous diamond -like carbon: percolation, cluster, and pair correlation analysis , 2012 .

[11]  N. Koprinarov,et al.  Carbon Structures Produced as a Result of Periodically Repeated Spark Discharge in Xylene , 2012 .

[12]  L. Z. Boguslavskii,et al.  Synthesis of Carbon Nanomaterials Using High-Voltage Electric Discharge Techniques , 2011 .

[13]  L. Z. Boguslavskii,et al.  Electric discharge techniques for synthesizing carbon nanomaterials and features of their structural state , 2011 .

[14]  Yang Ren,et al.  Li insertion in ball-milled graphitic carbon studied by total x-ray diffraction , 2011, Journal of physics. Condensed matter : an Institute of Physics journal.

[15]  C. Wong,et al.  Short-to-medium range order of Al–Mg metallic glasses studied by molecular dynamics simulations , 2011 .

[16]  Alfons Geiger,et al.  Volumetric properties of hydrated peptides: Voronoi-Delaunay analysis of molecular simulation runs. , 2011, The journal of physical chemistry. B.

[17]  Z. Stachurski On Structure and Properties of Amorphous Materials , 2011, Materials.

[18]  Akihiko Hirata,et al.  Direct observation of local atomic order in a metallic glass. , 2011, Nature materials.

[19]  Evan Ma,et al.  Atomic-level structure and structure–property relationship in metallic glasses , 2011 .

[20]  A. Hirata,et al.  Structure Analyses of Fe-based Metallic Glasses by Electron Diffraction , 2010, Materials.

[21]  L. Z. Boguslavskii On the possibility of the synthesis of nanocarbon under the high-frequency pulse-periodic electrodischarge effect on gaseous hydrocarbons , 2010 .

[22]  Michael A. Wilson,et al.  Unoccupied electronic structure of ball-milled graphite. , 2010, Physical chemistry chemical physics : PCCP.

[23]  Sébastien Le Roux,et al.  Ring statistics analysis of topological networks: New approach and application to amorphous GeS2 and SiO2 systems , 2010 .

[24]  L. Temleitner,et al.  Local order and orientational correlations in liquid and crystalline phases of carbon tetrabromide from neutron powder diffraction measurements , 2010, 1003.2252.

[25]  R. O. Jones,et al.  Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge2Sb2Te5 and GeTe , 2007 .

[26]  B. Inkson,et al.  Nanoscale tomography in materials science , 2007 .

[27]  A. Hirata,et al.  Voronoi Analysis of the Structure of Ni-Zr-Al Ternary Metallic Glass , 2007 .

[28]  Marina L. Gavrilova,et al.  An algorithm for three‐dimensional Voronoi S‐network , 2006, J. Comput. Chem..

[29]  A. Yavari,et al.  Materials science: A new order for metallic glasses , 2006, Nature.

[30]  J. Bai,et al.  Atomic packing and short-to-medium-range order in metallic glasses , 2006, Nature.

[31]  A. Hirata,et al.  Local atomic structures of amorphous Fe80B20 and Fe70Nb10B20 alloys studied by electron diffraction , 2005 .

[32]  P. Gaskell,et al.  Medium-range structure in glasses and low-Q structure in neutron and X-ray scattering data , 2005 .

[33]  D. Miracle,et al.  A structural model for metallic glasses , 2004, Microscopy and Microanalysis.

[34]  V. Berbenni,et al.  Effect of extended ball milling on graphite , 2003 .

[35]  I. Snook,et al.  Structural analysis of carbonaceous solids using an adapted reverse Monte Carlo algorithm , 2003 .

[36]  Irene Yarovsky,et al.  Hybrid approach for generating realistic amorphous carbon structure using metropolis and reverse Monte Carlo , 2002 .

[37]  J. Robertson Diamond-like amorphous carbon , 2002 .

[38]  D. Mckenzie,et al.  Comparison of density-functional, tight-binding, and empirical methods for the simulation of amorphous carbon , 2002 .

[39]  N. Marks Generalizing the environment-dependent interaction potential for carbon , 2000 .

[40]  R. Mcgreevy,et al.  Recent developments of the rmcpow method for structural modelling , 2000 .

[41]  X. B. Zhang,et al.  Generation of curved or closed-shell carbon nanostructures by ball-milling of graphite , 2000 .

[42]  V. Boldyrev,et al.  Mechanism and kinetics of mechanochemical processes in comminuting devices: 2. Applications of the theory. Experiment , 2000 .

[43]  A. Inoue Stabilization of metallic supercooled liquid and bulk amorphous alloys , 2000 .

[44]  V. Voloshin,et al.  Homogeneity loss phase transition in packings of Lennard-Jones atoms under density decreasing , 1999 .

[45]  Mellergård,et al.  Reverse Monte Carlo modelling of neutron powder diffraction data. , 1999, Acta crystallographica. Section A, Foundations of crystallography.

[46]  V. Borodin Local atomic arrangements in polytetrahedral materials , 1999 .

[47]  T. Fukunaga,et al.  Structural change of graphite subjected to mechanical milling , 1998 .

[48]  I. Snook,et al.  REVERSE MONTE CARLO ANALYSIS OF THE STRUCTURE OF GLASSY CARBON USING ELECTRON-MICROSCOPY DATA , 1998 .

[49]  T. Ohkubo,et al.  Study of amorphous alloy structures with medium range atomic ordering , 1998, Microscopy research and technique.

[50]  A. Authier,et al.  Diffraction Physics , 1998 .

[51]  H. Mao,et al.  The pressure-temperature phase and transformation diagram for carbon; updated through 1994 , 1996 .

[52]  Franzblau Ds,et al.  Computation of ring statistics for network models of solids. , 1991 .

[53]  Franzblau Computation of ring statistics for network models of solids. , 1991, Physical review. B, Condensed matter.

[54]  P. Butyagin,et al.  Determination of energy yield of mechanochemical reactions , 1986 .

[55]  J L Beeby,et al.  Physics of amorphous materials , 1984 .

[56]  F. Spaepen,et al.  Description of chemical ordering in amorphous alloys , 1981 .

[57]  D. Thouless,et al.  Models of Disorder: The Theoretical Physics of Homogeneously Disordered Systems , 1979 .

[58]  SHIRLEY V. KING,et al.  Ring Configurations in a Random Network Model of Vitreous Silica , 1967, Nature.

[59]  F. Bundy,et al.  Man-Made Diamonds , 1955, Nature.