Frequency content of sea surface height variability from internal gravity waves to mesoscale eddies

High horizontal-resolution (1=12:5 and 1=25 ) 41-layer global simulations of the HYbrid Coordinate Ocean Model (HYCOM), forced by both atmospheric fields and the astronomical tidal potential, are used to construct global maps of sea surface height (SSH) variability. The HYCOM output is separated into steric and nonsteric and into subtidal, diurnal, semidiurnal, and supertidal frequency bands. The model SSH output is compared to two data sets that offer some geographical coverage and that also cover a wide range of frequencies—a set of 351 tide gauges that measure full SSH and a set of 14 in situ vertical profilers from which steric SSH can be calculated. Three of the global maps are of interest in planning for the upcoming Surface Water and Ocean Topography (SWOT) two-dimensional swath altimeter mission: (1) maps of the total and (2) nonstationary internal tidal signal (the latter calculated after removing the stationary internal tidal signal via harmonic analysis), with an average variance of 1:05 and 0:43 cm2, respectively, for the semidiurnal band, and (3) a map of the steric supertidal contributions, which are dominated by the internal gravity wave continuum, with an average variance of 0:15 cm2. Stationary internal tides (which are predictable), nonstationary internal tides (which will be harder to predict), and nontidal internal gravity waves (which will be very difficult to predict) may all be important sources of high-frequency ‘‘noise’’ that could mask lower frequency phenomena in SSH measurements made by the SWOT mission.

[1]  Daniel E. Frye,et al.  A MOORED PROFILING INSTRUMENT , 1999 .

[2]  R. Hallberg,et al.  The accuracy of surface elevations in forward global barotropic and baroclinic tide models , 2004 .

[3]  F. Bryan,et al.  Short‐period oceanic circulation: Implications for satellite altimetry , 2000 .

[4]  Craig M. Lee,et al.  Salinity and temperature balances at the SPURS central mooring during fall and winter , 2015 .

[5]  D. Watts,et al.  Measurements of Sea Surface Height Variability in the Eastern South Atlantic from Pressure Sensor–Equipped Inverted Echo Sounders: Baroclinic and Barotropic Components , 2009 .

[6]  M. Levine,et al.  Incoherent Nature of M2 Internal Tides at the Hawaiian Ridge , 2011 .

[7]  R. Glazman,et al.  Altimeter observations of baroclinic oceanic intertia–gravity wave turbulence , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  D. Chelton,et al.  Chapter 2 Large-Scale Ocean Circulation , 2001 .

[9]  R. Ray Propagation of the overtide M4 through the deep Atlantic Ocean , 2007 .

[10]  Florent Lyard,et al.  Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing ‐ comparisons with observations , 2003 .

[11]  Rosemary Morrow,et al.  Chapter 3 Ocean Currents and Eddies , 2001 .

[12]  Eric P. Chassignet,et al.  US GODAE: Global Ocean Prediction with the Hybrid Coordinate Ocean Model (HYCOM) , 2004 .

[13]  E. Zaron Nonstationary Internal Tides Observed Using Dual-Satellite Altimetry , 2015 .

[14]  Carl Wunsch,et al.  Global‐scale sea surface variability from combined altimetric and tide gauge measurements , 1991 .

[15]  Paul D. Bates SWOT: The Surface Water and Ocean Topography Mission: Wide-Swath Altimetric Measurement of Water Elevation on Earth , 2012 .

[16]  P. Worcester,et al.  On the predictability of mode-1 internal tides , 2011 .

[17]  A. Wallcraft,et al.  Indirect evidence for substantial damping of low-mode internal tides in the open ocean , 2015 .

[18]  A. Wallcraft,et al.  On Improving the Accuracy of the M-2 Barotropic Tides Embedded in a High-Resolution Global Ocean Circulation Model , 2016 .

[19]  Gary D. Egbert,et al.  Numerical modeling of the global semidiurnal tide in the present day and in the last glacial maximum , 2004 .

[20]  A. Bennett,et al.  TOPEX/POSEIDON tides estimated using a global inverse model , 1994 .

[21]  R. Ray Spectral analysis of highly aliased sea‐level signals , 1998 .

[22]  A. Cazenave,et al.  Satellite altimetry and earth sciences : a handbook of techniques and applications , 2001 .

[23]  J. Richman,et al.  How stationary are the internal tides in a high‐resolution global ocean circulation model? , 2014 .

[24]  S. Riser,et al.  The ARGO Project: Global Ocean Observations for Understanding and Prediction of Climate Variability. Report for Calendar Year 2004 , 2000 .

[25]  B. Arbic,et al.  Internal lee wave closures: Parameter sensitivity and comparison to observations , 2015 .

[26]  Gary T. Mitchum,et al.  Surface manifestation of internal tides in the deep ocean: observations from altimetry and island gauges , 1997 .

[27]  Carl Wunsch,et al.  The global frequency-wavenumber spectrum of oceanic variability estimated from TOPEX/POSEIDON altimetric measurements , 1995 .

[28]  A. Wallcraft,et al.  An evaluation of the barotropic and internal tides in a high‐resolution global ocean circulation model , 2012 .

[29]  Carl Wunsch,et al.  De‐aliasing of global high frequency barotropic motions in altimeter observations , 2000 .

[30]  W. Munk,et al.  Tales of the Venerable Honolulu Tide Gauge , 2006 .

[31]  Maria Flatau,et al.  The Navy Global Environmental Model , 2014 .

[32]  A. Wallcraft,et al.  Inferring dynamics from the wavenumber spectra of an eddying global ocean model with embedded tides , 2012 .

[33]  C. Pattiaratchi,et al.  Tide Gauge Observations of 2004–2007 Indian Ocean Tsunamis from Sri Lanka and Western Australia , 2009 .

[34]  Raffaele Ferrari,et al.  Interpreting Energy and Tracer Spectra of Upper-Ocean Turbulence in the Submesoscale Range (1–200 km) , 2013 .

[35]  L. St. Laurent,et al.  Parameterizing tidal dissipation over rough topography , 2001 .

[36]  Alan J. Wallcraft,et al.  Impact of Parameterized Internal Wave Drag on the Semidiurnal Energy Balance in a Global Ocean Circulation Model , 2016 .

[37]  Richard D. Ray,et al.  A Global Ocean Tide Model From TOPEX/POSEIDON Altimetry: GOT99.2 , 1999 .

[38]  C. Wunsch,et al.  Ocean Circulation Kinetic Energy: Reservoirs, Sources, and Sinks , 2009 .

[39]  S. P. Anderson,et al.  Surface meteorology and air-sea fluxes in the western equatorial Pacific warm pool during the TOGA c , 1996 .

[40]  R. Ray,et al.  Semi‐diurnal and diurnal tidal dissipation from TOPEX/Poseidon altimetry , 2003 .

[41]  Gilles Reverdin,et al.  Global high-resolution mapping of ocean circulation from TOPEX/Poseidon and ERS-1 and -2 , 2000 .

[42]  D. Macayeal,et al.  On the factors behind large Labrador Sea tides during the last glacial cycle and the potential implications for Heinrich events , 2008 .

[43]  E. Joseph Metzger,et al.  Concurrent Simulation of the Eddying General Circulation and Tides in a Global Ocean Model , 2010 .

[44]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[45]  R. Helber,et al.  Optimizing Internal Wave Drag in a Forward Barotropic Model with Semidiurnal Tides , 2015 .

[46]  C. Wunsch Toward a Midlatitude Ocean Frequency–Wavenumber Spectral Density and Trend Determination , 2010 .

[47]  H. Hurlburt,et al.  The effect of upper ocean eddies on the non‐steric contribution to the barotropic mode , 2000 .

[48]  A. Wallcraft,et al.  Toward an internal gravity wave spectrum in global ocean models , 2015 .

[49]  Dimitris Menemenlis,et al.  Mesoscale to submesoscale wavenumber spectra in Drake Passage , 2016 .

[50]  E. Zaron Mapping the Nonstationary Internal Tide with Satellite Altimetry , 2017 .

[51]  G. Mellor Introduction to physical oceanography , 1996 .

[52]  Chris Garrett,et al.  Space-Time Scales of Internal Waves' A Progress Report , 1975 .

[53]  Ernesto Rodriguez,et al.  SWOT: The Surface Water and Ocean Topography Mission. Wide- Swath Altimetric Elevation on Earth , 2012 .

[54]  L. Rainville,et al.  Global Observations of Open-Ocean Mode-1 M2Internal Tides , 2016 .

[55]  R. Ponte,et al.  Regional analysis of the inverted barometer effect over the global ocean using TOPEX/POSEIDON data and model results , 1999 .

[56]  R. Ray,et al.  M2 Internal Tides and Their Observed Wavenumber Spectra from Satellite Altimetry , 2016 .

[57]  Alan J. Wallcraft,et al.  Global Modeling of Internal Tides Within an Eddying Ocean General Circulation Model , 2012 .