A Statistical Test for Differential Network Analysis Based on Inference of Gaussian Graphical Model

[1]  Wei Chen,et al.  FastGGM: An Efficient Algorithm for the Inference of Gaussian Graphical Model in Biological Networks , 2016, PLoS Comput. Biol..

[2]  Kim-Anh Do,et al.  DINGO: differential network analysis in genomics , 2015, Bioinform..

[3]  Tianxi Cai,et al.  Testing Differential Networks with Applications to Detecting Gene-by-Gene Interactions. , 2015, Biometrika.

[4]  A. Jemal,et al.  Global cancer statistics, 2012 , 2015, CA: a cancer journal for clinicians.

[5]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[6]  T. Cai,et al.  Direct estimation of differential networks. , 2014, Biometrika.

[7]  M. Loh,et al.  Activating mutations in RRAS underlie a phenotype within the RASopathy spectrum and contribute to leukaemogenesis , 2014, Human molecular genetics.

[8]  Harrison H. Zhou,et al.  Asymptotic normality and optimalities in estimation of large Gaussian graphical models , 2013, 1309.6024.

[9]  Weidong Liu Gaussian graphical model estimation with false discovery rate control , 2013, 1306.0976.

[10]  S. Lam,et al.  Genome-scale analysis of DNA methylation in lung adenocarcinoma and integration with mRNA expression , 2012, Genome research.

[11]  Dan Theodorescu,et al.  RhoGDI2 suppresses lung metastasis in mice by reducing tumor versican expression and macrophage infiltration. , 2012, The Journal of clinical investigation.

[12]  Larry A. Wasserman,et al.  The huge Package for High-dimensional Undirected Graph Estimation in R , 2012, J. Mach. Learn. Res..

[13]  Cun-Hui Zhang,et al.  Sparse matrix inversion with scaled Lasso , 2012, J. Mach. Learn. Res..

[14]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[15]  Patrick Danaher,et al.  The joint graphical lasso for inverse covariance estimation across multiple classes , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[16]  T. Cai,et al.  A Constrained ℓ1 Minimization Approach to Sparse Precision Matrix Estimation , 2011, 1102.2233.

[17]  Peter T Nelson,et al.  Dysregulation of the mitogen granulin in human cancer through the miR-15/107 microRNA gene group. , 2010, Cancer research.

[18]  Rainer Breitling,et al.  DiffCoEx: a simple and sensitive method to find differentially coexpressed gene modules , 2010, BMC Bioinformatics.

[19]  S. Horvath,et al.  WGCNA: an R package for weighted correlation network analysis , 2008, BMC Bioinformatics.

[20]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[21]  Rainer Spang,et al.  Inferring cellular networks – a review , 2007, BMC Bioinformatics.

[22]  Pu Li,et al.  Cloning of novel tumor metastasis-related genes from the highly metastatic human lung adenocarcinoma cell line Anip973. , 2007, Journal of genetics and genomics = Yi chuan xue bao.

[23]  Atul J. Butte,et al.  Systematic survey reveals general applicability of "guilt-by-association" within gene coexpression networks , 2005, BMC Bioinformatics.

[24]  M. Gerstein,et al.  Genomic analysis of regulatory network dynamics reveals large topological changes , 2004, Nature.

[25]  Michael R Hamblin,et al.  CA : A Cancer Journal for Clinicians , 2011 .

[26]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[27]  A. Barabasi,et al.  Emergence of Scaling in Random Networks , 1999 .

[28]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[29]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .