Approximating Maximum Diameter-Bounded Subgraphs
暂无分享,去创建一个
[1] Fanica Gavril,et al. Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph , 1972, SIAM J. Comput..
[2] Mihir Bellare,et al. Free Bits, PCPs, and Nonapproximability-Towards Tight Results , 1998, SIAM J. Comput..
[3] A. Brandstädt,et al. Graph Classes: A Survey , 1987 .
[4] David Zuckerman. Linear Degree Extractors and the Inapproximability of Max Clique and Chromatic Number , 2007, Theory Comput..
[5] Vijay V. Vazirani,et al. Approximation Algorithms , 2001, Springer Berlin Heidelberg.
[6] Bernd S. W. Schröder,et al. Algorithms for the Fixed Point Property , 1999, Theor. Comput. Sci..
[7] P. Pardalos,et al. Handbook of Combinatorial Optimization , 1998 .
[8] J. Håstad. Clique is hard to approximate withinn1−ε , 1999 .
[9] Richard M. Karp,et al. Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.
[10] P. Paulraja,et al. Powers of chordal graphs , 1983 .
[11] Bojan Mohar,et al. On approximating the maximum diameter ratio of graphs , 2002, Discret. Math..
[12] J. Jeffry Howbert,et al. The Maximum Clique Problem , 2007 .
[13] Andreas Goerdt,et al. An approximation hardness result for bipartite Clique , 2004, Electron. Colloquium Comput. Complex..
[14] Uriel Feige,et al. Approximating Maximum Clique by Removing Subgraphs , 2005, SIAM J. Discret. Math..
[15] Mihir Bellare,et al. Free bits, PCPs and non-approximability-towards tight results , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.