Forest-cover-type separation using RADARSAT-1 synthetic aperture radar imagery

RADARSAT-1 synthetic aperture radar data, speckle reduction, and texture measures provided for separation among forest types within the Twin Cities metropolitan area, MN, USA. The highest transformed divergence values for 16-bit data resulted from speckle filtering while the highest values for 8-bit data resulted from the orthorectified image, before and after performing a histogram stretch. First-order texture derivatives of 8-bit data provided only modest separability, while secondorder texture derivatives of 8-bit data provided little, if any, separability. RADARSAT-1 imagery may provide for image separation among forest types provided that preexisting forest/nonforest land cover classifications are incorporated.

[1]  Kaj Andersson,et al.  Mapping Forest in Europe by Combining Earth Observation Data and Forest Statistics , 2003 .

[2]  Herman H. Shugart,et al.  A Systems Analysis of the Global Boreal Forest , 1993 .

[3]  Zhiliang Zhu,et al.  Forest resources of the United States, 1992. , 1993 .

[4]  THE FOREST RESOURCES OF THE UNITED STATES. , 1896, Science.

[5]  Robert M. Haralick,et al.  Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..

[6]  Corina da Costa Freitas,et al.  The study of ERS-1 SAR and Landsat TM synergism for land use classification , 2000 .

[7]  J. Legarsky,et al.  Land-cover classification using radarsat and landsat imagery for St. Louis, Missouri , 2007 .

[8]  John R. Jensen,et al.  Introductory Digital Image Processing: A Remote Sensing Perspective , 1986 .

[9]  M. Dobson,et al.  The use of Imaging radars for ecological applications : A review , 1997 .

[10]  David A. Clausi,et al.  The effect of speckle filtering on scale-dependent texture estimation of a forested scene , 2000, IEEE Trans. Geosci. Remote. Sens..

[11]  Zhiliang Zhu,et al.  US forest types and predicted percent forest cover from AVHRR data , 1994 .

[12]  P. Townsend Principles and Applications of Imaging Radar: Manual of Remote Sensing , 2000 .

[13]  C. Perry,et al.  Forest Resources of the United States, 2007 , 2009 .

[14]  Victor S. Frost,et al.  A Model for Radar Images and Its Application to Adaptive Digital Filtering of Multiplicative Noise , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.