Dirichlet Process Gaussian-mixture model: An application to localizing coalescing binary neutron stars with gravitational-wave observations

We report on the Dirichlet Process Gaussian-mixture model, a fully Bayesian non-parametric method that can be used to estimate probability densities and compute credible volumes with a minimal set of assumptions. We illustrate its effectiveness by reconstructing posterior distributions for the position (sky area and distance) of a simulated set of binary neutron-star gravitational-waves signals observed with Advanced LIGO and Advanced Virgo. The ability to reliably reconstruct the source position is important for multimessenger astronomy, as recently demonstrated with GW170817. We show that for detector networks comparable to the early operation of Advanced LIGO and Advanced Virgo, typical localization volumes are $\sim10^4$--$10^5~\mathrm{Mpc^3}$ corresponding to $\sim10^2$--$10^3$ potential host galaxies. Fractional localizations improve with the addition of further detectors to the network. Our Dirichlet Process Gaussian-mixture model can be adopted for localizing events detected during future gravitational-wave observing runs, and used to facilitate prompt multimessenger follow-up.

[1]  David O. Jones,et al.  New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant , 2018, 1801.01120.

[2]  C. B. D'Andrea,et al.  Dark Energy Survey Year 1 Results: A Precise H0 Estimate from DES Y1, BAO, and D/H Data , 2017, Monthly Notices of the Royal Astronomical Society.

[3]  B. A. Boom,et al.  GW170817: Observation of Gravitational Waves from a Binary Neutron Star Inspiral. , 2017, Physical review letters.

[4]  J. K. Blackburn,et al.  A gravitational-wave standard siren measurement of the Hubble constant , 2017, Nature.

[5]  Dovi Poznanski,et al.  Optical emission from a kilonova following a gravitational-wave-detected neutron-star merger , 2017, Nature.

[6]  B. A. Boom,et al.  GW170814: A Three-Detector Observation of Gravitational Waves from a Binary Black Hole Coalescence. , 2017, Physical review letters.

[7]  B. A. Boom,et al.  GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2. , 2017, Physical review letters.

[8]  S. Gaebel,et al.  How would GW150914 look with future gravitational wave detector networks? , 2017, 1703.08988.

[9]  B. A. Boom,et al.  Search for high-energy neutrinos from gravitational wave event GW151226 and candidate LVT151012 with ANTARES and IceCube , 2017, 1703.06298.

[10]  Y. Wang,et al.  Calibration of the Advanced LIGO detectors for the discovery of the binary black-hole merger GW150914 , 2016, 1602.03845.

[11]  B. A. Boom,et al.  Search for Gravitational Waves Associated with Gamma-Ray Bursts during the First Advanced LIGO Observing Run and Implications for the Origin of GRB 150906B , 2016, 1611.07947.

[12]  D Huet,et al.  GW151226: Observation of Gravitational Waves from a 22-Solar-Mass Binary Black Hole Coalescence , 2016 .

[13]  Brad E. Tucker,et al.  A 2.4% DETERMINATION OF THE LOCAL VALUE OF THE HUBBLE CONSTANT , 2016, 1604.01424.

[14]  Y. Wang,et al.  High-energy neutrino follow-up search of gravitational wave event GW150914 with ANTARES and IceCube , 2016, 1602.05411.

[15]  B. A. Boom,et al.  ScholarWorks @ UTRGV ScholarWorks @ UTRGV Properties of the Binary Black Hole Merger GW150914 Properties of the Binary Black Hole Merger GW150914 , 2016 .

[16]  Y. Wang,et al.  GW150914: First results from the search for binary black hole coalescence with Advanced LIGO. , 2016, Physical review. D..

[17]  N. M. Brown,et al.  Prospects for Observing and Localizing Gravitational-Wave Transients with Advanced LIGO and Advanced Virgo , 2013, Living Reviews in Relativity.

[18]  Leo P. Singer,et al.  WHOOMP! (There it is): Rapid Bayesian position reconstruction for gravitational-wave transients , 2015 .

[19]  Mansi M. Kasliwal,et al.  GALAXY STRATEGY FOR LIGO-VIRGO GRAVITATIONAL WAVE COUNTERPART SEARCHES , 2015, 1508.03608.

[20]  P. Graff,et al.  PARAMETER ESTIMATION ON GRAVITATIONAL WAVES FROM NEUTRON-STAR BINARIES WITH SPINNING COMPONENTS , 2015, 1508.05336.

[21]  M. S. Shahriar,et al.  Characterization of the LIGO detectors during their sixth science run , 2014, 1410.7764.

[22]  P. Graff,et al.  PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA , 2014, 1411.6934.

[23]  R. Ibata,et al.  CECI N'EST PAS A GLOBULAR CLUSTER: THE METALLICITY DISTRIBUTION OF THE STELLAR SYSTEM TERZAN 5 , 2014, 1409.1682.

[24]  C. Broeck,et al.  Advanced Virgo: a second-generation interferometric gravitational wave detector , 2014, 1408.3978.

[25]  M. S. Shahriar,et al.  Methods and results of a search for gravitational waves associated with gamma-ray bursts using the GEO 600, LIGO, and Virgo detectors , 2014, 1405.1053.

[26]  Philip Graff,et al.  THE FIRST TWO YEARS OF ELECTROMAGNETIC FOLLOW-UP WITH ADVANCED LIGO AND VIRGO , 2014, 1404.5623.

[27]  Tao Xiang,et al.  Background Subtraction with DirichletProcess Mixture Models , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  S. Klimenko,et al.  Search for gravitational waves associated with γ-ray bursts detected by the interplanetary network. , 2014, Physical review letters.

[29]  Farhan Feroz,et al.  Reconstructing the sky location of gravitational-wave detected compact binary systems: methodology for testing and comparison , 2013, 1312.6013.

[30]  S. Fairhurst,et al.  Comparison of gravitational wave detector network sky localization approximations , 2013, 1310.7454.

[31]  F. Feroz,et al.  TempoNest: A Bayesian approach to pulsar timing analysis , 2013, 1310.2120.

[32]  Hiroaki Yamamoto,et al.  Interferometer design of the KAGRA gravitational wave detector , 2013, 1306.6747.

[33]  J. Gair,et al.  Extreme-mass-ratio-bursts from extragalactic sources , 2013, 1306.0774.

[34]  J. K. Blackburn,et al.  Parameter estimation for compact binary coalescence signals with the first generation gravitational-wave detector network , 2013, 1304.1775.

[35]  E. Nakar,et al.  The electromagnetic signals of compact binary mergers , 2012, 1204.6242.

[36]  A. Kottas,et al.  THE NEUTRON STAR MASS DISTRIBUTION , 2010, 1011.4291.

[37]  Mansi Kasliwal,et al.  IDENTIFYING ELUSIVE ELECTROMAGNETIC COUNTERPARTS TO GRAVITATIONAL WAVE MERGERS: AN END-TO-END SIMULATION , 2012, 1210.6362.

[38]  J. Veitch,et al.  Estimating parameters of coalescing compact binaries with proposed advanced detector networks , 2011, 1201.1195.

[39]  Dimitrios Psaltis,et al.  ON THE MASS DISTRIBUTION AND BIRTH MASSES OF NEUTRON STARS , 2012, 1201.1006.

[40]  E. Berger,et al.  WHAT IS THE MOST PROMISING ELECTROMAGNETIC COUNTERPART OF A NEUTRON STAR BINARY MERGER? , 2011, 1108.6056.

[41]  W. D. Pozzo Inference of cosmological parameters from gravitational waves: Applications to second generation interferometers , 2011, 1108.1317.

[42]  Erin Kara,et al.  TOWARD EARLY-WARNING DETECTION OF GRAVITATIONAL WAVES FROM COMPACT BINARY COALESCENCE , 2011, 1107.2665.

[43]  V. S. Dhillon,et al.  A list of galaxies for gravitational wave searches , 2011, 1103.0695.

[44]  L. Nuttall,et al.  Identifying the host galaxy of gravitational wave signals , 2010, 1009.1791.

[45]  Carl E. Rasmussen,et al.  Dirichlet Process Gaussian Mixture Models: Choice of the Base Distribution , 2010, Journal of Computer Science and Technology.

[46]  Richard O'Shaughnessy,et al.  Compact binary coalescences in the band of ground-based gravitational-wave detectors , 2009, 0912.1074.

[47]  S. Fairhurst Triangulation of gravitational wave sources with a network of detectors , 2009, 0908.2356.

[48]  Donald B. Rubin,et al.  Validation of Software for Bayesian Models Using Posterior Quantiles , 2006 .

[49]  P. Gregory Bayesian Logical Data Analysis for the Physical Sciences: Multivariate Gaussian from maximum entropy , 2005 .

[50]  David J. C. MacKay,et al.  Information Theory, Inference, and Learning Algorithms , 2004, IEEE Transactions on Information Theory.

[51]  M. Tribus,et al.  Probability theory: the logic of science , 2003 .

[52]  A. Lewis,et al.  Cosmological parameters from CMB and other data: A Monte Carlo approach , 2002, astro-ph/0205436.

[53]  Rameshwar D. Gupta,et al.  The History of the Dirichlet and Liouville Distributions , 2001 .

[54]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[55]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[56]  Flanagan,et al.  Gravitational waves from merging compact binaries: How accurately can one extract the binary's parameters from the inspiral waveform? , 1994, Physical review. D, Particles and fields.

[57]  B. Schutz Determining the Hubble constant from gravitational wave observations , 1986, Nature.

[58]  Albert Y. Lo,et al.  On a Class of Bayesian Nonparametric Estimates: I. Density Estimates , 1984 .

[59]  Walter L. Smith Probability and Statistics , 1959, Nature.