The Use of Interference Diagrams to Avoid Impeller Resonance: An Application to IGV Design
暂无分享,去创建一个
Interference diagrams can be used to avoid the potential excitation of a particular mode of vibration for centrifugal compressor impellers, thus reducing the risk of fatigue failures. Such diagrams are an excellent tool to combine information on impeller natural frequencies and mode shapes, excitation sources and operating speed of the machine on the same graph. Once the impeller design has been finalized in terms of aerodynamic performance, structural assessments and therefore geometry, Finite Element Analysis can be used to predict its natural frequencies and mode shapes (i.e. nodal diameters). Results can therefore be shown on a chart, together with the operating speed range of the machine. The need to plot on a single diagram this whole set of data arises from the mathematical evidence to consider the frequency of vibration together with the mode shape and the shape of the exciting force, while analyzing resonances. Typical Campbell diagrams are unable to provide this information at a glance. A common source of excitation for the first impeller of centrifugal compressors is the IGV set. Inlet Guide Vanes produce an exciting frequency that is directly proportional to the number of vanes N, where N represents also the shape of the excitation. The interference diagram can therefore be used: • to design and optimize the IGV for a new machine; • to choose between two different designs; • to evaluate the impact of a new IGV for the impeller of an existing compressor. A case study will be introduced, in order to show the application of interference diagrams to avoid potentially dangerous resonances between an IGV set and the first impeller during the re-design phase for a centrifugal compressor already in operation.Copyright © 2009 by ASME