Machine-learning Approach for the Development of a Novel Predictive Model for the Diagnosis of Hepatocellular Carcinoma

[1]  L. Celi,et al.  The advent of medical artificial intelligence: lessons from the Japanese approach , 2020, Journal of Intensive Care.

[2]  Ling Lin,et al.  Identification of a novel gene signature for the prediction of recurrence in HCC patients by machine learning of genome-wide databases , 2020, Scientific Reports.

[3]  Chong-jian Wang,et al.  Machine learning for characterizing risk of type 2 diabetes mellitus in a rural Chinese population: the Henan Rural Cohort Study , 2020, Scientific Reports.

[4]  S. Iwasaki,et al.  Prediction of Vestibular Dysfunction by Applying Machine Learning Algorithms to Postural Instability , 2020, Frontiers in Neurology.

[5]  Nan Liu,et al.  Heart rate variability based machine learning models for risk prediction of suspected sepsis patients in the emergency department , 2019, Medicine.

[6]  P. Schirmacher,et al.  EASL Clinical Practice Guidelines: Management of hepatocellular carcinoma. , 2018, Journal of hepatology.

[7]  Kei-Hoi Cheung,et al.  Predicting urinary tract infections in the emergency department with machine learning , 2018, PloS one.

[8]  Christian Kruse,et al.  Machine Learning Principles Can Improve Hip Fracture Prediction , 2017, Calcified Tissue International.

[9]  Samy Bengio,et al.  Understanding deep learning requires rethinking generalization , 2016, ICLR.

[10]  Faisal Saeed,et al.  Bioactive Molecule Prediction Using Extreme Gradient Boosting , 2016, Molecules.

[11]  P. Marcellin,et al.  Nomogram for individualized prediction of hepatocellular carcinoma occurrence in hepatitis C virus cirrhosis (ANRS CO12 CirVir) , 2016, Hepatology.

[12]  M. Makuuchi,et al.  Survival Analysis over 28 Years of 173,378 Patients with Hepatocellular Carcinoma in Japan , 2016, Liver Cancer.

[13]  M. Makuuchi,et al.  Survival Benefit of Locoregional Treatment for Hepatocellular Carcinoma with Advanced Liver Cirrhosis , 2016, Liver Cancer.

[14]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[15]  B. Sangro,et al.  Assessment of liver function in patients with hepatocellular carcinoma: a new evidence-based approach-the ALBI grade. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[16]  M. Blaha,et al.  Risk factors: New risk-assessment guidelines—more or less personalized? , 2014, Nature Reviews Cardiology.

[17]  Philip S. Yu,et al.  Bag Constrained Structure Pattern Mining for Multi-Graph Classification , 2014, IEEE Transactions on Knowledge and Data Engineering.

[18]  N. Chavez-Tapia,et al.  Clinical practice guidelines: Management of Hepatocellular Carcinoma , 2014 .

[19]  Xindong Wu,et al.  Data mining with big data , 2014, IEEE Transactions on Knowledge and Data Engineering.

[20]  M. Zoli,et al.  Alpha‐fetoprotein has no prognostic role in small hepatocellular carcinoma identified during surveillance in compensated cirrhosis , 2012, Hepatology.

[21]  Ronald M. Summers,et al.  Machine learning and radiology , 2012, Medical Image Anal..

[22]  Ryosuke Tateishi,et al.  nature publishing group ORIGINAL CONTRIBUTIONS 569 CME Radiofrequency Ablation for Hepatocellular Carcinoma: 10-Year Outcome and Prognostic Factors LIVER , 2022 .

[23]  V. Mazzaferro,et al.  EASL-EORTC Clinical Practice Guidelines: Management of hepatocellular carcinoma European Association for the Study of the Liver ⇑ , European Organisation for Research and Treatment of Cancer , 2012 .

[24]  Riccardo Lencioni,et al.  EASL-EORTC clinical practice guidelines: management of hepatocellular carcinoma. , 2012, Journal of hepatology.

[25]  J. Bruix,et al.  Management of hepatocellular carcinoma: An update , 2011, Hepatology.

[26]  R. Lencioni,et al.  The etiology of hepatocellular carcinoma and consequences for treatment. , 2010, The oncologist.

[27]  Chien-Jen Chen,et al.  Nomograms for risk of hepatocellular carcinoma in patients with chronic hepatitis B virus infection. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[28]  Jeong Min Lee,et al.  Asian Pacific Association for the Study of the Liver consensus recommendations on hepatocellular carcinoma , 2010, Hepatology international.

[29]  William M. Lee,et al.  Des-gamma-carboxy prothrombin and alpha-fetoprotein as biomarkers for the early detection of hepatocellular carcinoma. , 2010, Gastroenterology.

[30]  J. Marrero,et al.  Meta‐analysis: surveillance with ultrasound for early‐stage hepatocellular carcinoma in patients with cirrhosis , 2009, Alimentary pharmacology & therapeutics.

[31]  Bjoern H. Menze,et al.  A comparison of random forest and its Gini importance with standard chemometric methods for the feature selection and classification of spectral data , 2009, BMC Bioinformatics.

[32]  P. Tandon,et al.  Prognostic indicators in hepatocellular carcinoma: a systematic review of 72 studies , 2009, Liver international : official journal of the International Association for the Study of the Liver.

[33]  Sieu Phan,et al.  An ensemble machine learning approach to predict survival in breast cancer , 2008, Int. J. Comput. Biol. Drug Des..

[34]  F. Trevisani,et al.  Recent advances in the natural history of hepatocellular carcinoma. , 2008, Carcinogenesis.

[35]  M. Omata,et al.  Diagnostic accuracy of tumor markers for hepatocellular carcinoma: a systematic review , 2008, Hepatology international.

[36]  Jens Timmer,et al.  Data-based identifiability analysis of non-linear dynamical models , 2007, Bioinform..

[37]  J. Ferlay,et al.  Global Cancer Statistics, 2002 , 2005, CA: a cancer journal for clinicians.

[38]  Christian Igel,et al.  Evolutionary tuning of multiple SVM parameters , 2005, ESANN.

[39]  J. Bruix,et al.  Systematic review of randomized trials for unresectable hepatocellular carcinoma: Chemoembolization improves survival , 2003, Hepatology.

[40]  Pierre I Karakiewicz,et al.  International validation of a preoperative nomogram for prostate cancer recurrence after radical prostatectomy. , 2002, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[41]  Michael Feldman,et al.  TOWARD HELICOPTER GEARBOX DIAGNOSTICS FROM A SMALL NUMBER OF EXAMPLES , 2000 .

[42]  M. Makuuchi,et al.  Accurate preoperative evaluation of liver mass lesions without fine‐needle biopsy , 1999, Hepatology.

[43]  A. Jemal,et al.  Global cancer statistics , 2011, CA: a cancer journal for clinicians.

[44]  P. Bedossa,et al.  Age and platelet count: a simple index for predicting the presence of histological lesions in patients with antibodies to hepatitis C virus , 1997, Journal of viral hepatitis.

[45]  S. Nagataki,et al.  Early recognition of hepatocellular carcinoma based on altered profiles of alpha-fetoprotein. , 1993, The New England journal of medicine.

[46]  E. Hashimoto,et al.  Production of abnormal prothrombin (des-γ-carboxy prothrombin) by hepatocellular carcinoma , 1987 .

[47]  T. Ono,et al.  Fucosylation of serum α-fetoprotein in patients with primary hepatocellular carcinoma , 1985 .

[48]  T. Ono,et al.  Fucosylation of serum alpha-fetoprotein in patients with primary hepatocellular carcinoma. , 1985, Biochimica et biophysica acta.

[49]  Shou-Dong Lee,et al.  Des-γ-Carboxy (Abnormal) Prothrombin as a Serum Marker of Primary Hepatocellular Carcinoma , 1984 .

[50]  B. Furie,et al.  Des-gamma-carboxy (abnormal) prothrombin as a serum marker of primary hepatocellular carcinoma. , 1984, The New England journal of medicine.

[51]  H. Edmondson,et al.  Primary carcinoma of the liver. A study of 100 cases among 48,900 necropsies , 1954, Cancer.