Low Power Cylindrical Hall Thruster Performance and Plume Properties

A low power cylindrical Hall thruster (CHT) and fully cylindrical Hall thruster (FCHT) both demonstrated plume divergence reductions of approximately 25% by running a keeper discharge along with the anode discharge. Thruster anode efficiencies varied from approximately 15 to 35% over input powers from 70 to 220 W. A 2 A keeper discharge resulted in an approximately 20% increase in anode specific impulse for both thrusters, and the FCHT specific impulse was, on average, 13% higher than that of the CHT. Both thrusters exhibited mass utilization efficiencies greater than 100% due to generation of multi-charged ions. The quantity of channel erosion products in the plume correlated with that of multi-charged ions.

[1]  I. Katz,et al.  Theory of hollow operation in spot and plume modes , 1994 .

[2]  D. A. King,et al.  Ion flux, energy, and charge-state measurements for the BPT-4000 Hall thruster , 2001 .

[3]  N. Fisch,et al.  Enhanced performance of cylindrical Hall thrusters , 2007 .

[4]  Andrey A. Shagayda,et al.  Development of Low-Power Hall Thruster with Lifetime up to 3000 Hours , 2007 .

[5]  N. Fisch,et al.  Plasma measurements in a 100 W cylindrical Hall thruster , 2004 .

[6]  Yevgeny Raitses,et al.  Parametric investigation of miniaturized cylindrical and annular Hall thrusters , 2001 .

[7]  Artem Smirnov,et al.  Enhanced ionization in the cylindrical Hall thruster , 2002 .

[8]  James E. Pollard,et al.  Hall Thruster Plume Shield Wake Structure , 2003 .

[9]  H. Tahara,et al.  Operational characteristics and plasma measurements in cylindrical Hall thrusters , 2007 .

[10]  Yevgeny Raitses,et al.  Electron Transport and Ion Acceleration in a Low-Power Cylindrical Hall Thruster , 2004 .

[11]  Noah Warner,et al.  Design and Preliminary Testing of a Miniaturized TAL Hall Thruster , 2006 .

[12]  Yevgeny Raitses,et al.  A Study of Cylindrical Hall Thruster for Low Power Space Applications , 2000 .

[13]  Electron Transport and Ion Acceleration in a Low-Power Cylindrical Hall Thruster , 2004 .

[14]  N. Fisch,et al.  Optimization of Cylindrical Hall Thrusters , 2007 .

[15]  Yevgeny Raitses,et al.  Cathode effects in cylindrical Hall thrusters , 2008 .

[16]  V. I. Petrov,et al.  Diffusion of a low-soluble impurity in a solid matrix , 2004 .

[17]  Vadim Khayms,et al.  Design of a miniaturized Hall thruster for microsatellites , 1996 .

[18]  M. Patterson,et al.  Low-Current, Xenon Orificed Hollow Cathode Performance for In-Space Applications , 2003 .

[19]  Kevin D. Diamant,et al.  Performance measurements of a water fed microwave electrothermal thruster , 2001 .

[20]  Kurt A. Polzin,et al.  Performance of a Low-Power Cylindrical Hall Thruster , 2007 .

[21]  Mariano Andrenucci,et al.  A Review of the Hall Thruster Scaling Methodology , 2007 .

[22]  O. Gorshkov,et al.  Hall-type low- and mean-power thrusters output parameters , 1999 .

[23]  Andrey A. Shagayda,et al.  High-performance low power Hall thruster , 2001 .

[24]  Bruce Pote,et al.  Development of low power Hall thrusters , 1999 .

[25]  Nathaniel J. Fisch,et al.  The Effect of Magnetic Field on the Performance of Low-Power Cylindrical Hall Thrusters , 2005 .

[26]  P. C. T. de Boer,et al.  Electric probe measurements in the plume of an ion thruster , 1996 .

[27]  N. Fisch,et al.  Parametric investigations of a nonconventional Hall thruster , 2001 .