Controller complexity reduction for piecewise affine systems through safe region elimination

We consider the class of piecewise affine optimal state feedback control laws applied to discrete-time piecewise affine systems, motivated by recent work on the computation of closed-form MPC controllers. The storage demand and complexity of these optimal closed-form solutions limit their applicability in most real-life situations. In this paper we present a novel algorithm to a posteriori reduce the storage demand and complexity of the closed-form controller without losing closed-loop stability or all time feasibility while guaranteeing a bounded performance decay compared to the optimal solution. The algorithm combines simple polyhedral manipulations with (multi-parametric) linear programming and the effectiveness of the algorithm is demonstrated on a large numerical example.

[1]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[2]  Alberto Bemporad,et al.  Evaluation of piecewise affine control via binary search tree , 2003, Autom..

[3]  Eduardo Sontag Nonlinear regulation: The piecewise linear approach , 1981 .

[4]  Alberto Bemporad,et al.  Dynamic programming for constrained optimal control of discrete-time linear hybrid systems , 2005, Autom..

[5]  C. A. Desoer,et al.  Nonlinear Systems Analysis , 1978 .

[6]  Mikael Johansson,et al.  Piecewise linear control systems - a computational approach , 2002, Lecture notes in control and information sciences.

[7]  Alberto Bemporad,et al.  Approximate multiparametric convex programming , 2003 .

[8]  Chun-Liang Lin,et al.  Constrained optimal control for wheeled cars , 2000, 2009 4th International Conference on Autonomous Robots and Agents.

[9]  Jan M. Maciejowski,et al.  Predictive control : with constraints , 2002 .

[10]  Pascal Grieder,et al.  Efficient computation of feedback controllers for constrained systems , 2004 .

[11]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[12]  W. Heemels Linear complementarity systems : a study in hybrid dynamics , 1999 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[15]  Verne C. Fryklund,et al.  What systems analysis? , 1981, Nature.

[16]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[17]  M. Morari,et al.  Optimal complexity reduction of piecewise affine models based on hyperplane arrangements , 2004, Proceedings of the 2004 American Control Conference.

[18]  Mircea Lazar,et al.  Model predictive control of hybrid systems : stability and robustness , 2006 .

[19]  M. Johansson,et al.  Piecewise Linear Control Systems , 2003 .

[20]  Francesco Borrelli,et al.  Constrained Optimal Control of Linear and Hybrid Systems , 2003, IEEE Transactions on Automatic Control.

[21]  F. Christophersen Optimal Control of Constrained Piecewise Affine Systems , 2007 .

[22]  David Q. Mayne,et al.  Constrained model predictive control: Stability and optimality , 2000, Autom..

[23]  Alberto Bemporad,et al.  The explicit linear quadratic regulator for constrained systems , 2003, Autom..

[24]  Mato Baotic,et al.  Multi-Parametric Toolbox (MPT) , 2004, HSCC.

[25]  D. Mayne,et al.  Optimal control of constrained, piecewise affine systems with bounded disturbances , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[26]  Arjan van der Schaft,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[27]  A. Bemporad,et al.  Suboptimal Explicit Receding Horizon Control via Approximate Multiparametric Quadratic Programming , 2003 .

[28]  M. Vidyasagar,et al.  Nonlinear systems analysis (2nd ed.) , 1993 .

[29]  Alberto Bemporad,et al.  Stabilizing Model Predictive Control of Hybrid Systems , 2006, IEEE Transactions on Automatic Control.