Global signaling over lossy transmission lines

We describe an interconnect scheme based on lossy transmission lines, compare this scheme with traditional bus based links, and present performance data. Unlike some other schemes there is no requirement for up-conversion, equalization, or special metal processing. In preliminary work, we have measured data rates of 14 Gbps (limited by test equipment) over a 7.2 mm interconnection, implemented in 0.18 /spl mu/m CMOS. For active links signaling over a single serial link, is more power efficient than over traditional parallel buses, does not require repeaters and is less affected by noise and coupling.

[1]  William J. Dally,et al.  Digital systems engineering , 1998 .

[2]  Kenichi Okada,et al.  Differential transmission line interconnect for high speed and low power global wiring , 2004, Proceedings of the IEEE 2004 Custom Integrated Circuits Conference (IEEE Cat. No.04CH37571).

[3]  Frank O'Mahony,et al.  On-chip interconnect inductance - friend or foe , 2003, Fourth International Symposium on Quality Electronic Design, 2003. Proceedings..

[4]  Kurt Keutzer,et al.  Getting to the bottom of deep submicron II: a global wiring paradigm , 1999, ISPD '99.

[5]  Ken Mai,et al.  The future of wires , 2001, Proc. IEEE.

[6]  Robert W. Dutton,et al.  High-frequency characterization of on-chip digital interconnects , 2002, IEEE J. Solid State Circuits.

[7]  H. Hasegawa,et al.  Properties of Microstrip Line on Si-SiO/sub 2/ System , 1971 .

[8]  Patrick Yue,et al.  On-Chip Interconnect Inductance - Friend or Foe (Invited) , 2003 .

[9]  M.P. Flynn,et al.  Global High-Speed Signaling in Nanometer CMOS , 2005, 2005 IEEE Asian Solid-State Circuits Conference.

[10]  S. Wong,et al.  Near speed-of-light signaling over on-chip electrical interconnects , 2003 .

[11]  S. Wong,et al.  Exploiting CMOS reverse interconnect scaling in multigigahertz amplifier and oscillator design , 2001, IEEE J. Solid State Circuits.

[12]  David J. Foley,et al.  CMOS DLL based 2 V, 3.2 ps jitter, 1 GHz clock synthesizer and temperature compensated tunable oscillator , 2000, Proceedings of the IEEE 2000 Custom Integrated Circuits Conference (Cat. No.00CH37044).

[13]  Michael P. Flynn,et al.  A low-power 8-PAM serial-transceiver in 0.5 μm digital CMOS , 2001 .

[14]  Bonkee Kim,et al.  Simple modeling of coplanar waveguide on thick dielectric over lossy substrate , 1997 .

[15]  David J. Foley,et al.  CMOS DLL-based 2-V 3.2-ps jitter 1-GHz clock synthesizer and temperature-compensated tunable oscillator , 2001 .

[16]  Samuel D. Naffziger,et al.  The implementation of the Itanium 2 microprocessor , 2002, IEEE J. Solid State Circuits.

[17]  S.S. Wong,et al.  50-GHz Interconnect Design in Standard Silicon Technology , 1998, 51st ARFTG Conference Digest.

[18]  M.-C.F. Chang,et al.  Advanced RF/baseband interconnect schemes for inter- and intra-ULSI communications , 2005, IEEE Transactions on Electron Devices.

[19]  P. A. Franaszek,et al.  Transmission code for high-speed fibre-optic data networks , 1983 .

[20]  K. Masu,et al.  Evaluation of on-chip transmission line interconnect using wire length distribution , 2005, Proceedings of the ASP-DAC 2005. Asia and South Pacific Design Automation Conference, 2005..