Synthetic-to-Natural Speech Waveform Conversion Using Cycle-Consistent Adversarial Networks

We propose a learning-based filter that allows us to directly modify a synthetic speech waveform into a natural speech waveform. Speech-processing systems using a vocoder framework such as statistical parametric speech synthesis and voice conversion are convenient especially for a limited number of data because it is possible to represent and process interpretable acoustic features over a compact space, such as the fundamental frequency (F0) and mel-cepstrum. However, a well-known problem that leads to the quality degradation of generated speech is an over-smoothing effect that eliminates some detailed structure of generated/converted acoustic features. To address this issue, we propose a synthetic-to-natural speech waveform conversion technique that uses cycle-consistent adversarial networks and which does not require any explicit assumption about speech waveform in adversarial learning. In contrast to current techniques, since our modification is performed at the waveform level, we expect that the proposed method will also make it possible to generate “vocoder-less” sounding speech even if the input speech is synthesized using a vocoder framework. The experimental results demonstrate that our proposed method can 1) alleviate the over-smoothing effect of the acoustic features despite the direct modification method used for the waveform and 2) greatly improve the naturalness of the generated speech sounds.

[1]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[2]  Yann Dauphin,et al.  Language Modeling with Gated Convolutional Networks , 2016, ICML.

[3]  Soumith Chintala,et al.  Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks , 2015, ICLR.

[4]  Kou Tanaka,et al.  Vae-Space: Deep Generative Model of Voice Fundamental Frequency Contours , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[5]  Sergey Ioffe,et al.  Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift , 2015, ICML.

[6]  Hideki Kawahara,et al.  Restructuring speech representations using a pitch-adaptive time-frequency smoothing and an instantaneous-frequency-based F0 extraction: Possible role of a repetitive structure in sounds , 1999, Speech Commun..

[7]  Lior Wolf,et al.  Unsupervised Cross-Domain Image Generation , 2016, ICLR.

[8]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Hirokazu Kameoka,et al.  Generative adversarial network-based postfilter for statistical parametric speech synthesis , 2016, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[10]  Les E. Atlas,et al.  EURASIP Journal on Applied Signal Processing 2003:7, 668–675 c ○ 2003 Hindawi Publishing Corporation Joint Acoustic and Modulation Frequency , 2003 .

[11]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[12]  Heiga Zen,et al.  Statistical parametric speech synthesis using deep neural networks , 2013, 2013 IEEE International Conference on Acoustics, Speech and Signal Processing.

[13]  Antonio Bonafonte,et al.  SEGAN: Speech Enhancement Generative Adversarial Network , 2017, INTERSPEECH.

[14]  Yoshua Bengio,et al.  Generative Adversarial Nets , 2014, NIPS.

[15]  Geoffrey E. Hinton,et al.  Rectified Linear Units Improve Restricted Boltzmann Machines , 2010, ICML.

[16]  R. Brislin Back-Translation for Cross-Cultural Research , 1970 .

[17]  Alexei A. Efros,et al.  Image-to-Image Translation with Conditional Adversarial Networks , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[18]  Tomoki Toda,et al.  Voice Conversion Based on Maximum-Likelihood Estimation of Spectral Parameter Trajectory , 2007, IEEE Transactions on Audio, Speech, and Language Processing.

[19]  Heiga Zen,et al.  Statistical Parametric Speech Synthesis , 2007, 2007 IEEE International Conference on Acoustics, Speech and Signal Processing - ICASSP '07.

[20]  Shinnosuke Takamichi,et al.  Statistical Parametric Speech Synthesis Incorporating Generative Adversarial Networks , 2017, IEEE/ACM Transactions on Audio, Speech, and Language Processing.

[21]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[22]  Tomoki Toda,et al.  A postfilter to modify the modulation spectrum in HMM-based speech synthesis , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[23]  Alexei A. Efros,et al.  Context Encoders: Feature Learning by Inpainting , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Christian Ledig,et al.  Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[25]  Hideki Kawahara,et al.  Aperiodicity extraction and control using mixed mode excitation and group delay manipulation for a high quality speech analysis, modification and synthesis system STRAIGHT , 2001, MAVEBA.

[26]  Raymond Y. K. Lau,et al.  Least Squares Generative Adversarial Networks , 2016, 2017 IEEE International Conference on Computer Vision (ICCV).

[27]  Alexei A. Efros,et al.  Learning Dense Correspondence via 3D-Guided Cycle Consistency , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[28]  Hirokazu Kameoka,et al.  Parallel-Data-Free Voice Conversion Using Cycle-Consistent Adversarial Networks , 2017, ArXiv.

[29]  拓海 杉山,et al.  “Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks”の学習報告 , 2017 .

[30]  Andrea Vedaldi,et al.  Instance Normalization: The Missing Ingredient for Fast Stylization , 2016, ArXiv.

[31]  Hirokazu Kameoka,et al.  Sequence-to-Sequence Voice Conversion with Similarity Metric Learned Using Generative Adversarial Networks , 2017, INTERSPEECH.