Is choice self-evident?
暂无分享,去创建一个
[1] M. Gitik,et al. All uncountable cardinals can be singular , 1980 .
[2] Kenneth Kunen,et al. Elementary embeddings and infinitary combinatorics , 1971, Journal of Symbolic Logic.
[3] K. Schutte. Review: Paul Bernays, Die Philosophie der Mathematik und die Hilbertsche Beweistheorie , 1978 .
[4] Husserl Edmund,et al. Logische Untersuchungen. Zweiter Band - II. Teil , 1984 .
[5] Y. Moschovakis. Descriptive Set Theory , 1980 .
[6] Herman Rubin,et al. Equivalents of the Axiom of Choice , 1970 .
[7] G. Cantor,et al. Gesammelte Abhandlungen mathematischen und philosophischen Inhalts , 1934 .
[8] Edmund Husserl,et al. Erfahrung und Urteil : Untersuchungen zur Genealogie der Logik , 1939 .
[9] Die logischen Grundlagen der Mathematik , 1922 .
[10] G. Cantor,et al. Mitteilungen zur Lehre vom Transfiniten , 1887 .
[11] P. J. Cohen,et al. THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[12] A. Kanamori. The Higher Infinite , 1994 .
[13] Kai Hauser. Indescribable Cardinals and Elementary Embeddings , 1991, J. Symb. Log..
[14] Edmund Husserl,et al. Erfahrung und Urteil , 1999 .
[15] Thomas Jech,et al. About the Axiom of Choice , 1973 .
[16] Martin Zeman. Inner Models and Large Cardinals , 2001 .
[17] E. Zermelo. Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .
[18] Edmund Husserl. Psychologische Studien zur elementaren Logik , 1894 .
[19] Azriel Lévy. AXIOM SCHEMATA OF STRONG INFINITY IN AXIOMATIC SET THEORY , 1960 .
[20] K. Gödel. The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.
[21] Dana Scott. Measurable Cardinals and Constructible Sets , 2003 .
[22] John R. Steel,et al. The extent of scales in L(R) , 1983 .
[23] William N. Reinhardt,et al. Ackermann's set theory equals ZF , 1970 .
[24] Edmund Husserl,et al. Philosophie der Arithmetik , 1892 .
[25] Edmund Husserl,et al. Formale und transzendentale Logik , 1977 .
[26] Kurt Gödel,et al. What is Cantor's Continuum Problem? , 1947 .