Is choice self-evident?

[1]  M. Gitik,et al.  All uncountable cardinals can be singular , 1980 .

[2]  Kenneth Kunen,et al.  Elementary embeddings and infinitary combinatorics , 1971, Journal of Symbolic Logic.

[3]  K. Schutte Review: Paul Bernays, Die Philosophie der Mathematik und die Hilbertsche Beweistheorie , 1978 .

[4]  Husserl Edmund,et al.  Logische Untersuchungen. Zweiter Band - II. Teil , 1984 .

[5]  Y. Moschovakis Descriptive Set Theory , 1980 .

[6]  Herman Rubin,et al.  Equivalents of the Axiom of Choice , 1970 .

[7]  G. Cantor,et al.  Gesammelte Abhandlungen mathematischen und philosophischen Inhalts , 1934 .

[8]  Edmund Husserl,et al.  Erfahrung und Urteil : Untersuchungen zur Genealogie der Logik , 1939 .

[9]  Die logischen Grundlagen der Mathematik , 1922 .

[10]  G. Cantor,et al.  Mitteilungen zur Lehre vom Transfiniten , 1887 .

[11]  P. J. Cohen,et al.  THE INDEPENDENCE OF THE CONTINUUM HYPOTHESIS. , 1963, Proceedings of the National Academy of Sciences of the United States of America.

[12]  A. Kanamori The Higher Infinite , 1994 .

[13]  Kai Hauser Indescribable Cardinals and Elementary Embeddings , 1991, J. Symb. Log..

[14]  Edmund Husserl,et al.  Erfahrung und Urteil , 1999 .

[15]  Thomas Jech,et al.  About the Axiom of Choice , 1973 .

[16]  Martin Zeman Inner Models and Large Cardinals , 2001 .

[17]  E. Zermelo Beweis, daß jede Menge wohlgeordnet werden kann , 1904 .

[18]  Edmund Husserl Psychologische Studien zur elementaren Logik , 1894 .

[19]  Azriel Lévy AXIOM SCHEMATA OF STRONG INFINITY IN AXIOMATIC SET THEORY , 1960 .

[20]  K. Gödel The Consistency of the Axiom of Choice and of the Generalized Continuum-Hypothesis. , 1938, Proceedings of the National Academy of Sciences of the United States of America.

[21]  Dana Scott Measurable Cardinals and Constructible Sets , 2003 .

[22]  John R. Steel,et al.  The extent of scales in L(R) , 1983 .

[23]  William N. Reinhardt,et al.  Ackermann's set theory equals ZF , 1970 .

[24]  Edmund Husserl,et al.  Philosophie der Arithmetik , 1892 .

[25]  Edmund Husserl,et al.  Formale und transzendentale Logik , 1977 .

[26]  Kurt Gödel,et al.  What is Cantor's Continuum Problem? , 1947 .