Heterostructured simple perovskite nanorod-decorated double perovskite cathode for solid oxide fuel cells: Highly catalytic activity, stability and CO2-durability for oxygen reduction reaction

[1]  P. Gao,et al.  Fabrication of perovskite-type macro/mesoporous La1-xKxFeO3-δ nanotubes as an efficient catalyst for soot combustion , 2018, Applied Catalysis B: Environmental.

[2]  Jianxin Zhu,et al.  Oxygen reduction kinetic enhancements of intermediate-temperature SOFC cathodes with novel Nd0.5Sr0.5CoO3-δ/Nd0.8Sr1.2CoO4±δ heterointerfaces , 2018, Nano Energy.

[3]  Meilin Liu,et al.  An effective strategy to enhancing tolerance to contaminants poisoning of solid oxide fuel cell cathodes , 2018 .

[4]  P. Su,et al.  Nanomaterials and technologies for low temperature solid oxide fuel cells : Recent advances, challenges and opportunities , 2018 .

[5]  H Zhao,et al.  Co-deficient PrBaCo2−xO6−δ perovskites as cathode materials for intermediate-temperature solid oxide fuel cells: Enhanced electrochemical performance and oxygen reduction kinetics , 2018 .

[6]  Zongping Shao,et al.  Solid‐Oxide Fuel Cells: Recent Progress on Advanced Materials for Solid‐Oxide Fuel Cells Operating Below 500 °C (Adv. Mater. 48/2017) , 2017 .

[7]  Fellipe Sartori da Silva,et al.  Novel materials for solid oxide fuel cell technologies: A literature review , 2017 .

[8]  Unai De-La-Torre,et al.  Key factors in Sr-doped LaBO3 (B = Co or Mn) perovskites for NO oxidation in efficient diesel exhaust purification , 2017 .

[9]  M. Li,et al.  Enhancing Perovskite Electrocatalysis of Solid Oxide Cells Through Controlled Exsolution of Nanoparticles. , 2017, ChemSusChem.

[10]  T. Ishihara,et al.  Self-Decorated MnO Nanoparticles on Double Perovskite Solid Oxide Fuel Cell Anode by in Situ Exsolution , 2017 .

[11]  E. R. Losilla,et al.  Improving the efficiency of layered perovskite cathodes by microstructural optimization , 2017 .

[12]  Hailong Li,et al.  Comparison of the nickel addition patterns on the catalytic performances of LaCoO 3 for low-temperature CO oxidation , 2017 .

[13]  B. Chi,et al.  A CO 2 -tolerant La 2 NiO 4+δ -coated PrBa 0.5 Sr 0.5 Co 1.5 Fe 0.5 O 5+δ cathode for intermediate temperature solid oxide fuel cells , 2017 .

[14]  T. Thundat,et al.  A coupling for success: Controlled growth of Co/CoOx nanoshoots on perovskite mesoporous nanofibres as high-performance trifunctional electrocatalysts in alkaline condition , 2017 .

[15]  Zongping Shao,et al.  Mixed Conducting Perovskite Materials as Superior Catalysts for Fast Aqueous-Phase Advanced Oxidation: A Mechanistic Study , 2017 .

[16]  V. Thangadurai,et al.  Trends in electrode development for next generation solid oxide fuel cells , 2016 .

[17]  C. Yoo,et al.  Unraveling Crystal Structure and Transport Properties of Fast Ion Conducting SrCo0.9Nb0.1O3−δ , 2016 .

[18]  Chaehyun Lim,et al.  Influence of Ca-doping in layered perovskite PrBaCo2O5+δ on the phase transition and cathodic performance of a solid oxide fuel cell , 2016 .

[19]  Zongping Shao,et al.  Promotion of Oxygen Reduction by Exsolved Silver Nanoparticles on a Perovskite Scaffold for Low-Temperature Solid Oxide Fuel Cells. , 2016, Nano letters.

[20]  Giovanni Dotelli,et al.  Cobalt based layered perovskites as cathode material for intermediate temperature Solid Oxide Fuel Cells: A brief review , 2015 .

[21]  S. Feng,et al.  Crystal facet tailoring arts in perovskite oxides , 2015 .

[22]  Xuefeng Zhu,et al.  Nanoparticles at Grain Boundaries Inhibit the Phase Transformation of Perovskite Membrane. , 2015, Nano letters.

[23]  Zongping Shao,et al.  Nonstoichiometric Oxides as Low-Cost and Highly-Efficient Oxygen Reduction/Evolution Catalysts for Low-Temperature Electrochemical Devices. , 2015, Chemical reviews.

[24]  S. Penner,et al.  Exsolution of Fe and SrO Nanorods and Nanoparticles from Lanthanum Strontium Ferrite La0.6Sr0.4FeO3−δ Materials by Hydrogen Reduction , 2015, The journal of physical chemistry. C, Nanomaterials and interfaces.

[25]  Moses O. Tadé,et al.  Advances in Cathode Materials for Solid Oxide Fuel Cells: Complex Oxides without Alkaline Earth Metal Elements , 2015 .

[26]  Zongping Shao,et al.  Probing CO2 reaction mechanisms and effects on the SrNb0.1Co0.9−xFexO3−δ cathodes for solid oxide fuel cells , 2015 .

[27]  Meilin Liu,et al.  Operando and in situ X-ray spectroscopies of degradation in La0.6Sr0.4Co0.2Fe0.8O(3-δ) thin film cathodes in fuel cells. , 2014, ChemSusChem.

[28]  H Zhao,et al.  Superior electrochemical performance and oxygen reduction kinetics of layered perovskite PrBaxCo2O5+δ (x = 0.90–1.0) oxides as cathode materials for intermediate-temperature solid oxide fuel cells , 2014 .

[29]  Siwei Wang,et al.  Low temperature solid oxide fuel cells with hierarchically porous cathode nano-network , 2014 .

[30]  Wei Jiang,et al.  A novel Nb2O5-doped SrCo0.8Fe0.2O3−δ oxide with high permeability and stability for oxygen separation , 2012 .

[31]  B. Yildiz,et al.  Chemical Heterogeneities on La0.6Sr0.4CoO3−δ Thin Films—Correlations to Cathode Surface Activity and Stability , 2012 .

[32]  J. Kilner,et al.  Anisotropic Oxygen Ion Diffusion in Layered PrBaCo2O5+δ , 2012 .

[33]  E. Wachsman,et al.  Lowering the Temperature of Solid Oxide Fuel Cells , 2011, Science.

[34]  A. Chroneos,et al.  Defect processes in orthorhombic LnBaCo2O5.5 double perovskites. , 2011, Physical chemistry chemical physics : PCCP.

[35]  Y. Shao-horn,et al.  Enhanced oxygen reduction activity on surface-decorated perovskite thin films for solid oxide fuel cells , 2011 .

[36]  Meilin Liu,et al.  Enhancement of La0.6Sr0.4Co0.2Fe0.8O3-δ durability and surface electrocatalytic activity by La0.85Sr0.15MnO3±δ investigated using a new test electrode platform , 2011 .

[37]  B. Liu,et al.  A High‐Performance, Nanostructured Ba0.5Sr0.5Co0.8Fe0.2O3‐δ Cathode for Solid‐Oxide Fuel Cells , 2011 .

[38]  K. Efimov,et al.  Transmission Electron Microscopy Study of Ba0.5Sr0.5Co0.8Fe0.2O3−δ Perovskite Decomposition at Intermediate Temperatures , 2010 .

[39]  T. He,et al.  Performances of LnBaCo2O5+x-Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells , 2010 .

[40]  C. Mims,et al.  Rapid oxygen ion diffusion and surface exchange kinetics in PrBaCo2O5+x with a perovskite related structure and ordered A cations , 2007 .

[41]  J. Bassat,et al.  Electrode properties of Ln2NiO4 + δ ( Ln = La , Nd , Pr ) AC Impedance and DC Polarization Studies , 2006 .

[42]  Antonino S. Aricò,et al.  Investigation of a Ba0.5Sr0.5Co0.8Fe0.2O3−δ based cathode SOFC , 2006 .

[43]  S. Kaliaguine,et al.  Catalytic reduction of NO by propene over LaCo1−xCuxO3 perovskites synthesized by reactive grinding , 2006 .

[44]  S. Adler Factors governing oxygen reduction in solid oxide fuel cell cathodes. , 2004, Chemical reviews.

[45]  Zongping Shao,et al.  A high-performance cathode for the next generation of solid-oxide fuel cells , 2004, Nature.

[46]  B. Steele,et al.  Materials for fuel-cell technologies , 2001, Nature.

[47]  Koichi Kobayashi,et al.  Characterization of LSM-YSZ composite electrode by ac impedance spectroscopy , 2001 .

[48]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[49]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[50]  Juliana S. A. Carneiro,et al.  Optimizing cathode materials for intermediate-temperature solid oxide fuel cells (SOFCs): Oxygen reduction on nanostructured lanthanum nickelate oxides , 2017 .

[51]  F. Gao,et al.  Influence of molar ratio and calcination temperature on the properties of TixSn1 − xO2 supporting copper oxide for CO oxidation , 2016 .

[52]  Guntae Kim,et al.  A collaborative study of sintering and composite effects for a PrBa0.5Sr0.5Co1.5Fe0.5O5+δIT-SOFC cathode , 2014 .