Sorption of hydrogen and kinetics of hydrogen evolution on amorphous Ni-Sx electrodes

[1]  Iris L. Torriani,et al.  Hydride Effect on the Kinetics of the Hydrogen Evolution Reaction on Nickel Cathodes in Alkaline Media , 1992 .

[2]  M. Trudeau,et al.  Low Hydrogen Overpotential Nanocrystalline Ni‐Mo Cathodes for Alkaline Water Electrolysis , 1991 .

[3]  C. Lamy,et al.  Electrocatalytic oxidation of hydrogen on polycrystal and single-crystal nickel electrodes , 1990 .

[4]  I. Paseka,et al.  Properties of Ni−Sx electrodes for hydrogen evolution from alkaline medium , 1990 .

[5]  B. Conway,et al.  HYDRIDE FORMATION AT NI-CONTAINING GLASSY-METAL ELECTRODES DURING THE H2 EVOLUTION REACTION IN ALKALINE SOLUTIONS , 1990 .

[6]  J. Noël,et al.  Glassy Metals as Electrocatalysts for Hydrogen Evolution and Oxidation Part I : Electrocatalytic Properties of Amorphous Pt‐Si Alloy , 1989 .

[7]  G. Kreysa,et al.  Electrocatalysis by amorphous metals of hydrogen and oxygen evolution in alkaline solution , 1986 .

[8]  B. Conway,et al.  Determination of the adsorption behaviour of ‘overpotential-deposited’ hydrogen-atom species in the cathodic hydrogen-evolution reaction by analysis of potential-relaxation transients , 1985 .

[9]  R. Leysen,et al.  Hydrogen evolution at nickel sulphide cathodes in alkaline medium , 1984 .

[10]  G. Power The electrochemistry of the nickel sulfides—2. Ni3S2 , 1982 .

[11]  D. Goodman,et al.  Modification of chemisorption properties by electronegative adatoms: H2 and CO on chlorided, sulfided, and phosphided Ni(100) , 1981 .

[12]  R. Madix,et al.  Desorption of hydrogen and carbon monoxide from Ni(100), Ni(100)p(2 × 2)S, and Ni(100)c(2 × 2)S surfaces , 1981 .