Ordinary differential equations of probability functions of convoluted distributions

© 2018 The Authors. Published by IASE. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

[1]  P. Bromiley Products and Convolutions of Gaussian Probability Density Functions , 2013 .

[2]  P. E. Oguntunde,et al.  A Comparative Analysis on the Performance of the Convoluted Exponential Distribution and the Exponential Distribution in Terms of Flexibility , 2016 .

[3]  N. Balakrishna,et al.  Concepts of Stochastic Dependence , 2009 .

[4]  Samuel Kotz,et al.  The beta exponential distribution , 2006, Reliab. Eng. Syst. Saf..

[5]  G. Willmot,et al.  On applications of residual lifetimes of compound geometric convolutions , 2004, Journal of Applied Probability.

[6]  T. Anake,et al.  Solutions of Chi-square Quantile Differential Equation , 2017 .

[7]  F. Samaniego A Characterization of Convoluted Poisson Distributions with Applications to Estimation , 1976 .

[8]  T. Luu,et al.  Quantile Mechanics II: Changes of Variables in Monte Carlo Methods and GPU-Optimized Normal Quantiles , 2009, 0901.0638.

[9]  T. Anake,et al.  Quantile Approximation of the Chi–square Distribution using the Quantile Mechanics , 2017 .

[10]  William T. Shaw,et al.  Quantile mechanics , 2008, European Journal of Applied Mathematics.

[11]  W. Elderton,et al.  Frequency Curves and Correlation , 1907, Nature.

[12]  Statistical Properties of a Convoluted Beta-Weibull Distribution , 2011 .

[13]  P. E. Oguntunde,et al.  On the Sum of Exponentially Distributed Random Variables: A Convolution Approach , 2014 .

[14]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[15]  Andreas Kleefeld,et al.  A statistical application of the quantile mechanics approach: MTM estimators for the parameters of t and gamma distributions , 2012, European Journal of Applied Mathematics.

[16]  Horst Rinne,et al.  Location-Scale Distributions , 2011, International Encyclopedia of Statistical Science.