Early visual and auditory processing rely on modality-specific attentional resources

[1]  John D. Van Horn,et al.  Source cancellation profiles of electroencephalography and magnetoencephalography , 2012, NeuroImage.

[2]  E. Schröger,et al.  Maturation of obligatory auditory responses and their neural sources: Evidence from EEG and MEG , 2011, NeuroImage.

[3]  Christo Pantev,et al.  Sound Processing Hierarchy within Human Auditory Cortex , 2011, Journal of Cognitive Neuroscience.

[4]  Paul M. Corballis,et al.  Steady-state Signatures of Visual Perceptual Load, Multimodal Distractor Filtering, and Neural Competition , 2011, Journal of Cognitive Neuroscience.

[5]  T. Kellermann,et al.  Modality-specific perceptual expectations selectively modulate baseline activity in auditory, somatosensory, and visual cortices. , 2011, Cerebral cortex.

[6]  Matthias M. Müller,et al.  Sustained selective intermodal attention modulates processing of language-like stimuli , 2011, Experimental Brain Research.

[7]  D. Burr,et al.  Vision and Audition Do Not Share Attentional Resources in Sustained Tasks , 2011, Front. Psychology.

[8]  Robert Oostenveld,et al.  FieldTrip: Open Source Software for Advanced Analysis of MEG, EEG, and Invasive Electrophysiological Data , 2010, Comput. Intell. Neurosci..

[9]  P. Gander,et al.  Evidence for modality-specific but not frequency-specific modulation of human primary auditory cortex by attention , 2010, Hearing Research.

[10]  D. Senkowski,et al.  The multifaceted interplay between attention and multisensory integration , 2010, Trends in Cognitive Sciences.

[11]  S. Andersen,et al.  Behavioral performance follows the time course of neural facilitation and suppression during cued shifts of feature-selective attention , 2010, Proceedings of the National Academy of Sciences.

[12]  Seppo P. Ahlfors,et al.  Sensitivity of MEG and EEG to Source Orientation , 2010, Brain Topography.

[13]  C. Schroeder,et al.  The Leading Sense: Supramodal Control of Neurophysiological Context by Attention , 2009, Neuron.

[14]  Matthias M. Müller,et al.  Neural Mechanisms of Intermodal Sustained Selective Attention with Concurrently Presented Auditory and Visual Stimuli , 2009, Front. Hum. Neurosci..

[15]  E. Halgren,et al.  Cancellation of EEG and MEG signals generated by extended and distributed sources , 2009, Human brain mapping.

[16]  Robert T. Knight,et al.  Intermodal Auditory, Visual, and Tactile Attention Modulates Early Stages of Neural Processing , 2009, Journal of Cognitive Neuroscience.

[17]  John J. Foxe,et al.  Look who's talking: The deployment of visuo-spatial attention during multisensory speech processing under noisy environmental conditions , 2008, NeuroImage.

[18]  Jennifer L. Mozolic,et al.  Cross-modal deactivations during modality-specific selective attention , 2008, BMC neurology.

[19]  E. Brown,et al.  Quantification of the benefit from integrating MEG and EEG data in minimum ℓ2-norm estimation , 2008, NeuroImage.

[20]  Christopher D. Wickens,et al.  Multiple Resources and Mental Workload , 2008, Hum. Factors.

[21]  Michael J. Martinez,et al.  Bias between MNI and Talairach coordinates analyzed using the ICBM‐152 brain template , 2007, Human brain mapping.

[22]  Katja Saupe,et al.  Automatic detection of lexical change: an auditory event-related potential study , 2007, Neuroreport.

[23]  O. Bertrand,et al.  Effects of Selective Attention on the Electrophysiological Representation of Concurrent Sounds in the Human Auditory Cortex , 2007, The Journal of Neuroscience.

[24]  D. Spinelli,et al.  Spatiotemporal analysis of the cortical sources of the steady‐state visual evoked potential , 2007, Human brain mapping.

[25]  C. Spence,et al.  Developmental vision determines the reference frame for the multisensory control of action , 2007, Proceedings of the National Academy of Sciences.

[26]  M. Woldorff,et al.  Attentional capacity for processing concurrent stimuli is larger across sensory modalities than within a modality. , 2006, Psychophysiology.

[27]  Robert J. Zatorre,et al.  Neural substrates for dividing and focusing attention between simultaneous auditory and visual events , 2006, NeuroImage.

[28]  C. Tenke,et al.  Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: II. Adequacy of low-density estimates , 2006, Clinical Neurophysiology.

[29]  Jürgen Kayser,et al.  Principal components analysis of Laplacian waveforms as a generic method for identifying ERP generator patterns: I. Evaluation with auditory oddball tasks , 2006, Clinical Neurophysiology.

[30]  R. Zatorre,et al.  Attention to simultaneous unrelated auditory and visual events: behavioral and neural correlates. , 2005, Cerebral cortex.

[31]  L. M. Warner,et al.  The Neural Mechanisms for Minimizing Cross-Modal Distraction , 2004, The Journal of Neuroscience.

[32]  T. Picton,et al.  The effect of attention on the auditory steady-state response. , 2004, Neurology & clinical neurophysiology : NCN.

[33]  S. Yantis,et al.  Control of Attention Shifts between Vision and Audition in Human Cortex , 2004, The Journal of Neuroscience.

[34]  A. M. Dale,et al.  A hybrid approach to the skull stripping problem in MRI , 2004, NeuroImage.

[35]  G. Calvert,et al.  Multisensory integration: methodological approaches and emerging principles in the human brain , 2004, Journal of Physiology-Paris.

[36]  C. Spence,et al.  Speech Shadowing While Driving , 2003, Psychological science.

[37]  D. Strayer,et al.  Cell phone-induced failures of visual attention during simulated driving. , 2003, Journal of experimental psychology. Applied.

[38]  S. Taulu,et al.  Suppression of Interference and Artifacts by the Signal Space Separation Method , 2003, Brain Topography.

[39]  Alexandre Pouget,et al.  A computational perspective on the neural basis of multisensory spatial representations , 2002, Nature Reviews Neuroscience.

[40]  Y. Yen,et al.  Deactivation of Sensory-Specific Cortex by Cross-Modal Stimuli , 2002, Journal of Cognitive Neuroscience.

[41]  C. Frith,et al.  Processing of irrelevant visual motion during performance of an auditory attention task , 2001, Neuropsychologia.

[42]  Leslie G. Ungerleider,et al.  The neural basis of biased competition in human visual cortex , 2001, Neuropsychologia.

[43]  T. Wickens Elementary Signal Detection Theory , 2001 .

[44]  John J. Foxe,et al.  Determinants and mechanisms of attentional modulation of neural processing. , 2001, Frontiers in Bioscience.

[45]  Robert Oostenveld,et al.  The five percent electrode system for high-resolution EEG and ERP measurements , 2001, Clinical Neurophysiology.

[46]  C. Spence,et al.  The cost of expecting events in the wrong sensory modality , 2001, Perception & psychophysics.

[47]  B. Rockstroh,et al.  Statistical control of artifacts in dense array EEG/MEG studies. , 2000, Psychophysiology.

[48]  J L Lancaster,et al.  Automated Talairach Atlas labels for functional brain mapping , 2000, Human brain mapping.

[49]  C. Schroeder,et al.  Intermodal selective attention in monkeys. I: distribution and timing of effects across visual areas. , 2000, Cerebral cortex.

[50]  C. Schroeder,et al.  Intermodal selective attention in monkeys. II: physiological mechanisms of modulation. , 2000, Cerebral cortex.

[51]  M. Scherg,et al.  Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex , 1999, Clinical Neurophysiology.

[52]  P. Jolicoeur Restricted attentional capacity between sensory modalities , 1999, Psychonomic bulletin & review.

[53]  A. Dale,et al.  Cortical Surface-Based Analysis II: Inflation, Flattening, and a Surface-Based Coordinate System , 1999, NeuroImage.

[54]  Anders M. Dale,et al.  Cortical Surface-Based Analysis I. Segmentation and Surface Reconstruction , 1999, NeuroImage.

[55]  Matthias M. Müller,et al.  The time course of cortical facilitation during cued shifts of spatial attention , 1998, Nature Neuroscience.

[56]  A. Kok,et al.  Effects of inter- and intramodal selective attention to non-spatial visual stimuli: an event-related potential analysis , 1998, Biological Psychology.

[57]  E. Vogel,et al.  Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[58]  E. Schröger,et al.  ERP effects of intermodal attention and cross-modal links in spatial attention. , 1998, Psychophysiology.

[59]  S. Stone-Elander,et al.  Coexistence of Attention-Based Facilitation and Inhibition in the Human Cortex , 1998, NeuroImage.

[60]  J. Rauschecker,et al.  Attention‐related modulation of activity in primary and secondary auditory cortex , 1997, Neuroreport.

[61]  John Duncan,et al.  Restricted attentional capacity within but not between sensory modalities , 1997, Nature.

[62]  David LaBerge,et al.  Attentional Processing: The Brain's Art of Mindfulness , 1995 .

[63]  D. Lehmann,et al.  Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. , 1994, International journal of psychophysiology : official journal of the International Organization of Psychophysiology.

[64]  R. Näätänen,et al.  Intermodal selective attention. II. Effects of attentional load on processing of auditory and visual stimuli in central space. , 1992, Electroencephalography and clinical neurophysiology.

[65]  L. Boulter Attention and reaction times to signals of uncertain modality. , 1977, Journal of experimental psychology. Human perception and performance.

[66]  M. Posner,et al.  Visual dominance: an information-processing account of its origins and significance. , 1976, Psychological review.

[67]  U. Neisser,et al.  Selective looking: Attending to visually specified events , 1975, Cognitive Psychology.

[68]  D. Allport,et al.  On the Division of Attention: A Disproof of the Single Channel Hypothesis , 1972, The Quarterly journal of experimental psychology.

[69]  D. Broadbent A mechanical model for human attention and immediate memory. , 1957, Psychological review.

[70]  D. Broadbent Failures of attention in selective listening. , 1952, Journal of experimental psychology.

[71]  Jelliffe Vergleichende Lokalisationslehre der Grosshirnrinde , 1910 .

[72]  M. Hämäläinen Magnetoencephalography: A tool for functional brain imaging , 2005, Brain Topography.

[73]  R D Pascual-Marqui,et al.  Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. , 2002, Methods and findings in experimental and clinical pharmacology.

[74]  D. Lehmann,et al.  Functional imaging with low-resolution brain electromagnetic tomography (LORETA): a review. , 2002, Methods and findings in experimental and clinical pharmacology.

[75]  A. Dale,et al.  High‐resolution intersubject averaging and a coordinate system for the cortical surface , 1999, Human brain mapping.

[76]  D. Regan Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine , 1989 .

[77]  K. Brodmann Vergleichende Lokalisationslehre der Großhirnrinde : in ihren Prinzipien dargestellt auf Grund des Zellenbaues , 1985 .