A spectral-Lagrangian Boltzmann solver for a multi-energy level gas

[1]  Kazuo Aoki,et al.  Shock-wave structure for a binary gas mixture: finite-difference analysis of the Boltzmann equation for hard-sphere molecules , 2001 .

[2]  G. Russo,et al.  Numerical Solution of the Boltzmann Equation I: Spectrally Accurate Approximation of the Collision Operator , 2000, SIAM J. Numer. Anal..

[3]  D. Owen Handbook of Mathematical Functions with Formulas , 1965 .

[4]  Milton Abramowitz,et al.  Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables , 1964 .

[5]  M. Shaw,et al.  Statistical theory of electronic energy relaxation , 1986 .

[6]  P. Bhatnagar,et al.  A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .

[7]  C. Hirsch Numerical computation of internal and external flows , 1988 .

[8]  Marc Massot,et al.  Kinetic Theory of Plasmas: Translational Energy , 2007, 0711.0681.

[9]  K. Aoki,et al.  Gas flows caused by evaporation and condensation on two parallel condensed phases and the negative temperature gradient: Numerical analysis by using a nonlinear kinetic equation , 1994 .

[10]  Joel H. Ferziger,et al.  Shock‐Wave Structure using Nonlinear Model Boltzmann Equations , 1972 .

[11]  Livio Gibelli,et al.  Mean field kinetic theory description of evaporation of a fluid into vacuum , 2005 .

[12]  G. Toscani,et al.  Fast spectral methods for the Fokker-Planck-Landau collision operator , 2000 .

[13]  T. Barth On the Role of Involutions in the Discontinuous Galerkin Discretization of Maxwell and Magnetohydrodynamic Systems , 2013 .

[14]  B. M. Fulk MATH , 1992 .

[15]  Francis Filbet,et al.  High order numerical methods for the space non-homogeneous Boltzmann equation , 2003 .

[16]  Lorenzo Pareschi,et al.  A Fourier spectral method for homogeneous boltzmann equations , 1996 .

[17]  D. B. Goldstein,et al.  Monte Carlo solution of the Boltzmann equation via a discrete velocity model , 2011, J. Comput. Phys..

[18]  Irene M. Gamba,et al.  SHOCK AND BOUNDARY STRUCTURE FORMATION BY SPECTRAL-LAGRANGIAN METHODS FOR THE INHOMOGENEOUS BOLTZMANN TRANSPORT EQUATION * , 2010 .

[19]  Marco Panesi,et al.  Rovibrational internal energy transfer and dissociation of N2(1Σg+)-N(4S(u)) system in hypersonic flows. , 2013, The Journal of chemical physics.

[20]  S. Rjasanow,et al.  Difference scheme for the Boltzmann equation based on the Fast Fourier Transform , 1997 .

[21]  W. Steckelmacher Molecular gas dynamics and the direct simulation of gas flows , 1996 .

[22]  Dellacherie Stéphane On the Wang Chang-Uhlenbeck equations , 2003 .

[23]  T. Magin,et al.  Statistical simulation of internal energy exchange in shock waves using explicit transition probabilities , 2012 .

[24]  Taku Ohwada,et al.  Structure of normal shock waves: Direct numerical analysis of the Boltzmann equation for hard-sphere molecules , 1993 .

[25]  Lorenzo Pareschi,et al.  Solving the Boltzmann Equation in N log2N , 2006, SIAM J. Sci. Comput..

[26]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[27]  Prakash Vedula,et al.  Kinetic solution of the structure of a shock wave in a nonreactive gas mixture , 2011 .

[28]  Irene M. Gamba,et al.  A conservative spectral method for the Boltzmann equation with anisotropic scattering and the grazing collisions limit , 2013, J. Comput. Phys..

[29]  Irene M. Gamba,et al.  Spectral-Lagrangian methods for collisional models of non-equilibrium statistical states , 2009, J. Comput. Phys..

[30]  Steven G. Johnson,et al.  FFTW: Fastest Fourier Transform in the West , 2012 .

[31]  Yaman Güçlü,et al.  A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows , 2012, J. Comput. Phys..

[32]  Mikhail Naumovich Kogan,et al.  Rarefied Gas Dynamics , 1969 .

[33]  T. G. Cowling,et al.  The mathematical theory of non-uniform gases : notes added in 1951 , 1951 .

[34]  Luc Mieussens,et al.  Numerical comparison of Bhatnagar–Gross–Krook models with proper Prandtl number , 2004 .

[35]  F. G. Tcheremissine,et al.  Solution to the Boltzmann kinetic equation for high-speed flows , 2006 .

[36]  L. Mieussens Discrete-Velocity Models and Numerical Schemes for the Boltzmann-BGK Equation in Plane and Axisymmetric Geometries , 2000 .

[37]  Giovanni Russo,et al.  Numerical solutions of the Boltzmann equation: comparison of different algorithms , 2008 .

[38]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[39]  A. Bobylev,et al.  The Fourier transform method in the theory of the Boltzmann equation for Maxwellian molecules , 1975 .

[40]  S. Rjasanow,et al.  Fast deterministic method of solving the Boltzmann equation for hard spheres , 1999 .

[41]  Pierre Bertrand,et al.  A wavelet-MRA-based adaptive semi-Lagrangian method for the relativistic Vlasov-Maxwell system , 2008, J. Comput. Phys..

[42]  Charles Hirsch,et al.  Numerical computation of internal & external flows: fundamentals of numerical discretization , 1988 .

[43]  T. Magin,et al.  Boltzmann rovibrational collisional coarse-grained model for internal energy excitation and dissociation in hypersonic flows. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[44]  H. Wilhelmsson Mathematical theory of transport processes in gases , 1972 .

[45]  V. V. Aristov,et al.  Unified solver for rarefied and continuum flows with adaptive mesh and algorithm refinement , 2007, J. Comput. Phys..

[46]  Steven G. Johnson,et al.  The Design and Implementation of FFTW3 , 2005, Proceedings of the IEEE.

[47]  V. Giovangigli Multicomponent flow modeling , 1999 .