Stability of the critical distance method for fretting cracking prediction: influence of microstructure and crack nucleation size

[1]  J. A. Araújo,et al.  Fretting fatigue total life assessment including wear and a varying critical distance , 2021, International Journal of Fatigue.

[2]  Diego Infante-García,et al.  On the use of the theory of critical distances with mesh control for fretting fatigue lifetime assessment , 2020, Tribology International.

[3]  Yong Jun Li,et al.  Large versus Small Grain Sizes on Fatigue Life of Aluminum Aircraft Wheels , 2019, Defect and Diffusion Forum.

[4]  S. Fouvry,et al.  Wear rate impact on Ti-6Al-4V fretting crack risk: Experimental and numerical comparison between cylinder/plane and punch/plane contact geometries , 2017 .

[5]  S. Leen,et al.  Statistical grain size effects in fretting crack initiation , 2017 .

[6]  S. Fouvry,et al.  From uni- to multi-axial fretting-fatigue crack nucleation: Development of a stress-gradient-dependent critical distance approach , 2014 .

[7]  S. Fouvry,et al.  Stress gradient effect on the crack nucleation process of a Ti–6Al–4V titanium alloy under fretting loading: Comparison between non-local fatigue approaches , 2013 .

[8]  N. Tsuji,et al.  Microstructures of Pearlite and Martensite Transformed from Ultrafine-Grained Austenite Fabricated through Cyclic Heat Treatment in Medium Carbon Steels , 2013 .

[9]  N. Moës,et al.  4460 - EVALUATION OF STRESS INTENSITY FACTORS WITH G-THETA METHOD AND LEVEL SETS IN CODE_ASTER , 2013 .

[10]  B. Berthel,et al.  Fretting fatigue crack growth simulation based on a combined experimental and XFEM strategy , 2013 .

[11]  S. Leen,et al.  A finite element study of microstructure-sensitive plasticity and crack nucleation in fretting , 2011 .

[12]  K. Wallin Statistical uncertainty in the fatigue threshold staircase test method , 2011 .

[13]  S. Fouvry,et al.  Stress gradient effect on crack initiation in fretting using a multiaxial fatigue framework , 2010 .

[14]  S. Fouvry,et al.  Development of a fretting–fatigue mapping concept: The effect of material properties and surface treatments , 2009 .

[15]  José Alexander Araújo,et al.  On the application of multiaxial high-cycle fatigue criteria using the theory of critical distances , 2009 .

[16]  D. Hills,et al.  Prediction of fretting crack propagation based on a short crack methodology , 2008 .

[17]  David Nowell,et al.  Fretting fatigue in dovetail blade roots: Experiment and analysis , 2006 .

[18]  S. Fouvry,et al.  Determination and prediction of the fretting crack initiation : introduction of the (P, Q, N) representation and definition of a variable process volume , 2006, 0810.4096.

[19]  David Taylor,et al.  Geometrical effects in fatigue: a unifying theoretical model , 1999 .

[20]  J. Moosbrugger,et al.  Effects of grain size on cyclic plasticity and fatigue crack initiation in nickel , 1997 .

[21]  K. Dang Van,et al.  An analysis of fretting-fatigue failure combined with numerical calculations to predict crack nucleation , 1995 .

[22]  David Taylor,et al.  Notch geometry effects in fatigue: A conservative design approach , 1994 .

[23]  J. Charlier,et al.  Effect of grain size and intergranular stresses on the cyclic behaviour of a ferritic steel , 1993 .

[24]  K. J. Miller,et al.  Materials science perspective of metal fatigue resistance , 1993 .

[25]  H. Li,et al.  Effect of grain size on slow fatigue crack propagation and plastic deformation near crack tip , 1987 .

[26]  Alexander M. Mood,et al.  A Method for Obtaining and Analyzing Sensitivity Data , 1948 .

[27]  J. Buffière,et al.  Identification of the fatigue stress intensity factor threshold for different load ratios R: From fretting fatigue to C(T) fatigue experiments , 2016 .

[28]  S. Fouvry,et al.  Stability of critical distance approach to predict fretting fatigue cracking: a “ℓopt–bopt” concept , 2016 .

[29]  J. Buffière,et al.  Reverse identification of short–long crack threshold fatigue stress intensity factors from plain fretting crack arrest analysis , 2015 .

[30]  T. Hattori,et al.  Fretting Fatigue Life Estimations Based on the Critical Distance Stress Theory , 2011 .

[31]  David Taylor,et al.  The Theory of Critical Distances , 2007 .

[32]  A. Maréchal,et al.  Residual Stress Redistribution due to Cyclic Loading in a Railway Wheel/Axle Assembly , 2004 .

[33]  I. Papadopoulos A HIGH‐CYCLE FATIGUE CRITERION APPLIED IN BIAXIAL AND TRIAXIAL OUT‐OF‐PHASE STRESS CONDITIONS , 1995 .

[34]  T. Ogawa,et al.  The effect of grain size on small fatigue crack growth in pure titanium , 1994 .

[35]  G. Malakondaiah,et al.  Influence of polycrystal grain size on fracture toughness of and fatigue threshold in Armco iron , 1987 .

[36]  M. E. Haddad,et al.  Prediction of non propagating cracks , 1979 .

[37]  M. E. Haddad,et al.  Fatigue Crack Propagation of Short Cracks , 1979 .

[38]  K. N. Smith A Stress-Strain Function for the Fatigue of Metals , 1970 .

[39]  C. Flament,et al.  DIGITAL IMAGE CORRELATION APPLIED TO THERMAL EXPANSION OF COMPOSITES , 2022 .