Rethinking the minimum distance: Channels with varying sampling rate and interative decoding of LDPC codes

Rethinking the Minimum Distance: Channels With Varying Sampling Rate and Iterative Decoding of LDPC Codes

[1]  Lara Dolecek,et al.  Quantization Effects in Low-Density Parity-Check Decoders , 2007, 2007 IEEE International Conference on Communications.

[2]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[3]  Cvbemetics LaboratoN CONSTRAINED CODES FOR THE CORRECTION OF SYNCHRONIZATION AND ADDITIVE ERRORS , 2006 .

[4]  Jeffrey D. Ullman,et al.  Near-optimal, single-synchronization-error-correcting code , 1966, IEEE Trans. Inf. Theory.

[5]  Emre Telatar,et al.  Finite-length analysis of low-density parity-check codes on the binary erasure channel , 2002, IEEE Trans. Inf. Theory.

[6]  Lara Dolecek,et al.  GEN03-6: Investigation of Error Floors of Structured Low-Density Parity-Check Codes by Hardware Emulation , 2006, IEEE Globecom 2006.

[7]  Thomas J. Richardson,et al.  Error Floors of LDPC Codes , 2003 .

[8]  Alon Orlitsky Interactive Communication of Balanced Distributions and of Correlated Files , 1993, SIAM J. Discret. Math..

[9]  Shu Lin,et al.  Low-density parity-check codes based on finite geometries: A rediscovery and new results , 2001, IEEE Trans. Inf. Theory.

[10]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[11]  G. Tenengolts,et al.  Nonbinary codes, correcting single deletion or insertion , 1984, IEEE Trans. Inf. Theory.

[12]  Marcy Josephine Ammer Low Power Synchronization for Wireless Communication , 2004 .

[13]  A. Vardy,et al.  Stopping sets in codes from designs , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[14]  Bane Vasic,et al.  Coding and Signal Processing for Magnetic Recording Systems , 2004 .

[15]  H S Vandiver,et al.  Characters over Certain Types of Rings with Applications to the Theory of Equations in a Finite Field. , 1949, Proceedings of the National Academy of Sciences of the United States of America.

[16]  V. Levenshtein On perfect codes in deletion and insertion metric , 1992 .

[17]  Wei Zeng,et al.  Optimal soft-output detector for channels with intersymbol interference and timing errors , 2003 .

[18]  Radford M. Neal,et al.  Near Shannon limit performance of low density parity check codes , 1996 .

[19]  Torleiv Kløve,et al.  Codes correcting a single insertion/deletion of a zero or a single peak-shift , 1995, IEEE Trans. Inf. Theory.

[20]  Hendrik C. Ferreira,et al.  A note on double insertion/deletion correcting codes , 2003, IEEE Trans. Inf. Theory.

[21]  Khaled A. S. Abdel-Ghaffar,et al.  Insertion/deletion correction with spectral nulls , 1997, IEEE Trans. Inf. Theory.

[22]  S. Wicker Error Control Systems for Digital Communication and Storage , 1994 .

[23]  Shu Lin,et al.  Error Control Coding , 2004 .

[24]  David J. C. MacKay,et al.  Reliable communication over channels with insertions, deletions, and substitutions , 2001, IEEE Trans. Inf. Theory.

[25]  Tor Helleseth,et al.  On the minimum distance of array codes as LDPC codes , 2003, IEEE Trans. Inf. Theory.

[26]  Michael Chertkov,et al.  Loop Calculus Helps to Improve Belief Propagation and Linear Programming Decodings of Low-Density-Parity-Check Codes , 2006, ArXiv.

[27]  Jack J. Stiffler,et al.  Comma-free error-correcting codes , 1965, IEEE Trans. Inf. Theory.

[28]  Robert Rumely,et al.  Primes in arithmetic progressions , 1996, Math. Comput..

[29]  Robert J. McEliece,et al.  The generalized distributive law , 2000, IEEE Trans. Inf. Theory.

[30]  V. Anantharam,et al.  Evaluation of the Low Frame Error Rate Performance of LDPC Codes Using Importance Sampling , 2007, 2007 IEEE Information Theory Workshop.

[31]  G. Forney,et al.  Codes on graphs: normal realizations , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[32]  Lara Dolecek,et al.  A Synchronization Technique for Array-based LDPC Codes in Channels With Varying Sampling Rate , 2006, 2006 IEEE International Symposium on Information Theory.

[33]  Sae-Young Chung,et al.  On the design of low-density parity-check codes within 0.0045 dB of the Shannon limit , 2001, IEEE Communications Letters.

[34]  R. C. Bose,et al.  Synchronizable Error-Correcting Codes , 1967, Inf. Control..

[35]  Michael Horstein,et al.  Review of 'Low-Density Parity-Check Codes' (Gallager, R. G.; 1963) , 1964, IEEE Transactions on Information Theory.

[36]  Rüdiger L. Urbanke,et al.  The capacity of low-density parity-check codes under message-passing decoding , 2001, IEEE Trans. Inf. Theory.

[37]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[38]  Alon Orlitsky,et al.  Stopping set distribution of LDPC code ensembles , 2003, IEEE Transactions on Information Theory.

[39]  N.J.A. Sloane,et al.  On Single-Deletion-Correcting Codes , 2002, math/0207197.

[40]  T. Mittelholzer Efficient encoding and minimum distance bounds of Reed-Solomon-type array codes , 2002, Proceedings IEEE International Symposium on Information Theory,.

[41]  Vladimir I. Levenshtein,et al.  Binary codes capable of correcting deletions, insertions, and reversals , 1965 .

[42]  A. Weil Numbers of solutions of equations in finite fields , 1949 .

[43]  J.R. Barry,et al.  Iterative timing recovery , 2004, IEEE Signal Processing Magazine.

[44]  M. Mitzenmacher,et al.  Concatenated codes for deletion channels , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[45]  Hendrik C. Ferreira,et al.  A new linear, quasicyclic multiple insertion/deletion correcting code , 2003, 2003 IEEE Pacific Rim Conference on Communications Computers and Signal Processing (PACRIM 2003) (Cat. No.03CH37490).

[46]  T. Apostol Introduction to analytic number theory , 1976 .

[47]  S. McLaughlin,et al.  Joint timing recovery and turbo equalization for coded partial response channels , 2002 .

[48]  Patrick A. H. Bours,et al.  Construction of fixed-length insertion/deletion correcting runlength-limited codes , 1994, IEEE Trans. Inf. Theory.

[49]  W. W. Peterson,et al.  Error-Correcting Codes. , 1962 .

[50]  E. Gilbert,et al.  Symmetry types of periodic sequences , 1961 .

[51]  John R. Barry,et al.  Per-survivor timing recovery for uncoded partial response channels , 2004, 2004 IEEE International Conference on Communications (IEEE Cat. No.04CH37577).

[52]  Martin J. Wainwright,et al.  Using linear programming to Decode Binary linear codes , 2005, IEEE Transactions on Information Theory.

[53]  O. Milenkovic,et al.  Algorithmic and combinatorial analysis of trapping sets in structured LDPC codes , 2005, 2005 International Conference on Wireless Networks, Communications and Mobile Computing.

[54]  H. C. Ferreira,et al.  On multiple insertion/deletion correcting codes , 1994, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[55]  P. Vontobel,et al.  Graph-covers and iterative decoding of nite length codes , 2003 .

[56]  Lorenzo Calabi,et al.  A family of codes for the correction of substitution and synchronization errors , 1969, IEEE Trans. Inf. Theory.

[57]  David J. C. MacKay,et al.  Weaknesses of Margulis and Ramanujan-Margulis low-density parity-check cCodes , 2003, MFCSIT.

[58]  B. V. K. Vijaya Kumar,et al.  Symbol timing recovery for low-SNR partial response recording channels , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[59]  Daniel J. Costello,et al.  Error Control Coding, Second Edition , 2004 .