High-Voltage Backside-Illuminated CMOS Photovoltaic Module for Powering Implantable Temperature Sensors

In this study, we demonstrate a complementary metal–oxide–semiconductor (CMOS) backside-illuminated photovoltaic (PV) module. Fabrication of the module involves localized substrate removal from a CMOS PV chip, the application of antireflective silicon nanowires, and supercritical carbon dioxide fluid treatment. The resulting PV module achieved open-circuit voltage of 1.76–2.05 V and electrical power of 0.061–3.44 mW under an illumination intensity of 0.1–4 mW/mm2, which is sufficient for the direct powering of implantable temperature sensors without the need for a voltage-boosting circuit. The proposed PV module is applicable to remote self-powered systems in a wide variety of applications.

[1]  John A. Rogers,et al.  Compact monocrystalline silicon solar modules with high voltage outputs and mechanically flexible designs , 2010 .

[2]  Christopher K. Ober,et al.  An overview of supercritical CO 2 applications in microelectronics processing , 2003 .

[3]  V. S. Mallela,et al.  Trends in Cardiac Pacemaker Batteries , 2004, Indian pacing and electrophysiology journal.

[4]  W A Morrison,et al.  Diamond encapsulated photovoltaics for transdermal power delivery. , 2016, Biosensors & bioelectronics.

[5]  Chia-Wei Huang,et al.  Enhanced Efficiency in Backside-Illuminated Deep-n-Well-Assisted CMOS Photovoltaic Devices , 2015, IEEE Electron Device Letters.

[6]  Enric Cabruja,et al.  Small PV generators assembled using multichip module technology , 2002 .

[7]  L. Mancini,et al.  The Safety of Using Body-Transmit MRI in Patients with Implanted Deep Brain Stimulation Devices , 2015, PloS one.

[8]  J.M. Steininger Understanding wide-band MOS transistors , 1990, IEEE Circuits and Devices Magazine.

[9]  Naveen Verma,et al.  Ultralow-power electronics for biomedical applications. , 2008, Annual review of biomedical engineering.

[10]  M K Law,et al.  High-Voltage Generation With Stacked Photodiodes in Standard CMOS Process , 2010, IEEE Electron Device Letters.

[11]  Sungho Jeong,et al.  Subdermal Flexible Solar Cell Arrays for Powering Medical Electronic Implants , 2016, Advanced healthcare materials.

[12]  San-Liang Lee,et al.  Antireflective silicon surface with vertical-aligned silicon nanowires realized by simple wet chemical etching processes. , 2011, Optics express.

[13]  Ya‐Ping Sun,et al.  Supercritical fluid conversion of graphene oxides , 2012 .

[14]  Yung-Jr Hung,et al.  High-Voltage Generation in CMOS Photovoltaic Devices by Localized Substrate Removal , 2016, IEEE Electron Device Letters.

[15]  San-Liang Lee,et al.  CMOS-Enabled Interdigitated Back-Contact Solar Cells for Biomedical Applications , 2014, IEEE Transactions on Electron Devices.

[16]  A. Yalçinkaya,et al.  Optoelectronic CMOS Power Supply Unit for Electrically Isolated Microscale Applications , 2011, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  David Blaauw,et al.  Subcutaneous Photovoltaic Infrared Energy Harvesting for Bio-implantable Devices , 2017, IEEE Transactions on Electron Devices.

[18]  Rajeevan Amirtharajah,et al.  Integrated Solar Energy Harvesting and Storage , 2009, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[19]  Luis Castañer,et al.  High voltage photovoltaic mini‐modules , 2008 .

[20]  Ting‐Chang Chang,et al.  Low-Temperature Passivation of Amorphous-Silicon Thin-Film Transistors With Supercritical Fluids , 2007, IEEE Electron Device Letters.

[21]  A. Hassibi,et al.  A Photovoltaic-Driven and Energy-Autonomous CMOS Implantable Sensor , 2012, IEEE Transactions on Biomedical Circuits and Systems.

[22]  Jung Hyun Han,et al.  Generation of electrical power under human skin by subdermal solar cell arrays for implantable bioelectronic devices. , 2017, Biosensors & bioelectronics.

[23]  Fumio Horiguchi Integration of series-connected on-chip solar battery in a triple-well CMOS LSI , 2011 .

[24]  Y. Hung,et al.  Manipulating the antireflective properties of vertically-aligned silicon nanowires , 2014 .

[25]  Kenneth S. Szajda,et al.  A Low Noise, High Resolution Silicon Temperature Sensor , 1994, ESSCIRC '94: Twientieth European Solid-State Circuits Conference.

[26]  A. Zurbuchen,et al.  Energy Harvesting by Subcutaneous Solar Cells: A Long-Term Study on Achievable Energy Output , 2017, Annals of Biomedical Engineering.