Suicidal risk identification in social media

[1]  Bin Wang,et al.  Evaluating word embedding models: methods and experimental results , 2019, APSIPA Transactions on Signal and Information Processing.

[2]  Tina Esther Trueman,et al.  A C-LSTM with Attention Mechanism for Question Categorization , 2020 .

[3]  Ramit Sawhney,et al.  #suicidal - A Multipronged Approach to Identify and Explore Suicidal Ideation in Twitter , 2019, CIKM.

[4]  J AshokKumar,et al.  Sentiment Mining Approaches for Big Data Classification and Clustering , 2018 .

[5]  Tomas Mikolov,et al.  Enriching Word Vectors with Subword Information , 2016, TACL.

[6]  Shirui Pan,et al.  Supervised Learning for Suicidal Ideation Detection in Online User Content , 2018, Complex..

[7]  Christopher D. Manning,et al.  Effective Approaches to Attention-based Neural Machine Translation , 2015, EMNLP.

[8]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[9]  Yoshua Bengio,et al.  Neural Machine Translation by Jointly Learning to Align and Translate , 2014, ICLR.

[10]  S. Nayak,et al.  Suicidal ideation prediction in twitter data using machine learning techniques , 2020 .

[11]  Yoshua Bengio,et al.  On the Properties of Neural Machine Translation: Encoder–Decoder Approaches , 2014, SSST@EMNLP.

[12]  Guodong Long,et al.  Suicidal Ideation Detection: A Review of Machine Learning Methods and Applications , 2019, IEEE Transactions on Computational Social Systems.

[13]  Mihaela Cocea,et al.  Text Classification For Suicide Related Tweets , 2018, 2018 International Conference on Machine Learning and Cybernetics (ICMLC).

[14]  Swati Aggarwal,et al.  A Computational Approach to Feature Extraction for Identification of Suicidal Ideation in Tweets , 2018, ACL.

[15]  Krishnaprasad Thirunarayan,et al.  Knowledge-aware Assessment of Severity of Suicide Risk for Early Intervention , 2019, WWW.

[16]  Jeffrey Pennington,et al.  GloVe: Global Vectors for Word Representation , 2014, EMNLP.

[17]  Kuldip K. Paliwal,et al.  Bidirectional recurrent neural networks , 1997, IEEE Trans. Signal Process..