Tunneling phenomena in carbon nanotube field‐effect transistors

In the present article we will discuss the electronic trans‐ port properties of carbon nanotube field‐effect transistors (CNFETs). Three different device concepts will be studied in more detail: Schottky‐barrier CNFETs with metallic source and drain contacts, conventional‐type CNFETs with doped nanotube segments as source and drain electrodes and finally a new concept, the tunneling CNFET. As it turns out, tunneling phenomena play a prominent role in all three CNFET designs and determine their electrical behavior to a large extend. In addition, the one‐dimensionality of the electronic transport makes them ideally suited for novel device architecture such as the tunneling CNFET. Analytical as well as simulation results will be given and compared with each other and with experimental data in order to explain the different influences on the electronic transport in CNFETs and thus on the device behavior. (© 2008 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  H. Flietner,et al.  The E(k) Relation for a Two‐Band Scheme of Semiconductors and the Application to the Metal‐Semiconductor Contact , 1972 .

[3]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[4]  李幼升,et al.  Ph , 1989 .

[5]  K. F. Lee,et al.  Scaling the Si MOSFET: from bulk to SOI to bulk , 1992 .

[6]  Mark S. Lundstrom Elementary scattering theory of the Si MOSFET , 1997, IEEE Electron Device Letters.

[7]  J. Plummer,et al.  Scaling theory for cylindrical, fully-depleted, surrounding-gate MOSFET's , 1997, IEEE Electron Device Letters.

[8]  M. Dresselhaus,et al.  Physical properties of carbon nanotubes , 1998 .

[9]  C. Dekker,et al.  Logic Circuits with Carbon Nanotube Transistors , 2001, Science.

[10]  B. Lengeler,et al.  Quantum simulations of an ultrashort channel single-gated n-MOSFET on SOI , 2002 .

[11]  Qian Wang,et al.  Carbon Nanotube Transistor Arrays for Multistage Complementary Logic and Ring Oscillators , 2002, Nano Letters.

[12]  S. Wind,et al.  Field-modulated carrier transport in carbon nanotube transistors. , 2002, Physical review letters.

[13]  Short-channel like effects in Schottky barrier carbon nanotube field-effect transistors , 2002, Digest. International Electron Devices Meeting,.

[14]  S. Datta,et al.  A simple quantum mechanical treatment of scattering in nanoscale transistors , 2003 .

[15]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[16]  David L. Pulfrey,et al.  Quantum capacitance in nanoscale device modeling , 2004 .

[17]  M. Radosavljevic,et al.  Multimode transport in Schottky-barrier carbon-nanotube field-effect transistors. , 2004, Physical review letters.

[18]  M. Radosavljevic,et al.  Tunneling versus thermionic emission in one-dimensional semiconductors. , 2004, Physical review letters.

[19]  J. Appenzeller,et al.  Band-to-band tunneling in carbon nanotube field-effect transistors. , 2004, Physical review letters.

[20]  M. Fuhrer,et al.  Properties and applications of high-mobility semiconducting nanotubes , 2004 .

[21]  An extended model for carbon nanotube field-effect transistors , 2004, Conference Digest [Includes 'Late News Papers' volume] Device Research Conference, 2004. 62nd DRC..

[22]  J. Knoch,et al.  A novel concept for field-effect transistors - the tunneling carbon nanotube FET , 2005, 63rd Device Research Conference Digest, 2005. DRC '05..

[23]  Phaedon Avouris,et al.  The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors. , 2005, Nano letters.

[24]  J. Appenzeller,et al.  Comparing carbon nanotube transistors - the ideal choice: a novel tunneling device design , 2005, IEEE Transactions on Electron Devices.

[25]  Joachim Knoch,et al.  Comparison of transport properties in carbon nanotube field-effect transistors with Schottky contacts and doped source/drain contacts , 2005 .

[26]  J. Knoch,et al.  High-performance carbon nanotube field-effect transistor with tunable polarities , 2005, IEEE Transactions on Nanotechnology.

[27]  M. Lundstrom,et al.  Computational study of carbon nanotube p-i-n tunnel FETs , 2005, IEEE InternationalElectron Devices Meeting, 2005. IEDM Technical Digest..

[28]  Min Zhang,et al.  On the performance of single-gated ultrathin-body SOI Schottky-barrier MOSFETs , 2006, IEEE Transactions on Electron Devices.

[29]  A. Rinzler,et al.  An Integrated Logic Circuit Assembled on a Single Carbon Nanotube , 2006, Science.

[30]  Ali Javey,et al.  Carbon Nanotubes: From Growth, Placement and Assembly Control to 60mV/decade and Sub-60 mV/decade Tunnel Transistors , 2006, 2006 International Electron Devices Meeting.

[31]  Joachim Knoch,et al.  Carbon Nanotube Field-effect Transistors-The Importance of Being Small , 2006 .

[32]  J. Knoch,et al.  Impact of the dimensionality on the performance of tunneling FETs: Bulk versus one-dimensional devices , 2007 .

[33]  Yu-Ming Lin,et al.  1/f Noise in Carbon Nanotube Devices—On the Impact of Contacts and Device Geometry , 2007, IEEE Transactions on Nanotechnology.

[34]  W. Riess,et al.  Outperforming the Conventional Scaling Rules in the Quantum-Capacitance Limit , 2008, IEEE Electron Device Letters.