Facial design and synthesis of CoSx/Ni-Co LDH nanocages with rhombic dodecahedral structure for high-performance asymmetric supercapacitors

[1]  Tao Liu,et al.  Nickel-based materials for supercapacitors , 2019, Materials Today.

[2]  Qingyu Li,et al.  Three-dimensional graphene-like porous carbon nanosheets derived from molecular precursor for high-performance supercapacitor application , 2019, Electrochimica Acta.

[3]  Zhiwei Wang,et al.  Ultrahigh energy density of a N, O codoped carbon nanosphere based all-solid-state symmetric supercapacitor , 2019, Journal of Materials Chemistry A.

[4]  Zhiwei Wang,et al.  Synergistic design of a N, O co-doped honeycomb carbon electrode and an ionogel electrolyte enabling all-solid-state supercapacitors with an ultrahigh energy density , 2019, Journal of Materials Chemistry A.

[5]  Jianguo Zhao,et al.  A novel three-dimensional hierarchical NiCo2O4/Ni2P electrode for high energy asymmetric supercapacitor , 2018, Chemical Engineering Journal.

[6]  W. Fei,et al.  Interlaced Ni-Co LDH nanosheets wrapped Co9S8 nanotube with hierarchical structure toward high performance supercapacitors , 2018, Chemical Engineering Journal.

[7]  Jun Wang,et al.  A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures , 2018, Chemical Engineering Journal.

[8]  X. Jiao,et al.  Synthesis and application of nanocages in supercapacitors , 2018, Chemical Engineering Journal.

[9]  P. Shen,et al.  High-Performance Asymmetric Supercapacitor Based on Hierarchical NiMn2O4@CoS Core–Shell Microspheres and Stereotaxically Constricted Graphene , 2018, ACS Sustainable Chemistry & Engineering.

[10]  Miaomiao Liang,et al.  Rose-like Ni3S4 as battery-type electrode for hybrid supercapacitor with excellent charge storage performance , 2018, Chemical Engineering Journal.

[11]  Juan-Yu Yang,et al.  Surface‐Confined Fabrication of Ultrathin Nickel Cobalt‐Layered Double Hydroxide Nanosheets for High‐Performance Supercapacitors , 2018, Advanced Functional Materials.

[12]  Feng Liu,et al.  Enhanced performance of multi-dimensional CoS nanoflake/NiO nanosheet architecture with synergetic effect for asymmetric supercapacitor , 2018, Nanotechnology.

[13]  M. Selvakumar,et al.  Active-defective activated carbon/MoS2 composites for supercapacitor and hydrogen evolution reactions , 2018, Applied Surface Science.

[14]  Jun Cheng,et al.  Hierarchical NiCo 2 O 4 @Co-Fe LDH core-shell nanowire arrays for high-performance supercapacitor , 2018, Applied Surface Science.

[15]  S. Ji,et al.  Core-shell structured Ni3S2@Co(OH)2 nano-wires grown on Ni foam as binder-free electrode for asymmetric supercapacitors , 2018, Chemical Engineering Journal.

[16]  Mu Li,et al.  Template-assisted synthesis of NiCoO2 nanocages/reduced graphene oxide composites as high-performance electrodes for supercapacitors , 2018, RSC advances.

[17]  Haijun Wu,et al.  Cactus‐Like NiCoP/NiCo‐OH 3D Architecture with Tunable Composition for High‐Performance Electrochemical Capacitors , 2018 .

[18]  J. Shim,et al.  One-step synthesis of hollow C-NiCo2S4 nanostructures for high-performance supercapacitor electrodes. , 2018, Nanoscale.

[19]  Weishan Li,et al.  Ultrathin NiCo2S4@graphene with a core–shell structure as a high performance positive electrode for hybrid supercapacitors , 2018 .

[20]  Limin Wu,et al.  Synthesis of NiMn-LDH Nanosheet@Ni3S2 Nanorod Hybrid Structures for Supercapacitor Electrode Materials with Ultrahigh Specific Capacitance , 2018, Scientific Reports.

[21]  M. Sui,et al.  Inverted Design for High‐Performance Supercapacitor Via Co(OH)2‐Derived Highly Oriented MOF Electrodes , 2018 .

[22]  Jun Wang,et al.  Hierarchical FeCo2O4@NiCo layered double hydroxide core/shell nanowires for high performance flexible all-solid-state asymmetric supercapacitors , 2018 .

[23]  Yu-Sheng Hsiao,et al.  Ternary composite based on homogeneous Ni(OH)2 on graphene with Ag nanoparticles as nanospacers for efficient supercapacitor , 2018 .

[24]  Qianqian Sun,et al.  Simple preparation of graphene-decorated NiCo2O4 hollow nanospheres with enhanced performance for supercapacitor , 2018, Journal of Materials Science: Materials in Electronics.

[25]  Wu Lei,et al.  Three-Dimensional Hierarchical Structure ZnO@C@NiO on Carbon Cloth for Asymmetric Supercapacitor with Enhanced Cycle Stability. , 2018, ACS applied materials & interfaces.

[26]  F. Cao,et al.  Hierarchical sheet-like Ni–Co layered double hydroxide derived from a MOF template for high-performance supercapacitors , 2017 .

[27]  F. Gao,et al.  ZIF-67 derived amorphous CoNi2S4 nanocages with nanosheet arrays on the shell for a high-performance asymmetric supercapacitor , 2017 .

[28]  Jiaguo Yu,et al.  Hierarchical NiS/N-doped carbon composite hollow spheres with excellent supercapacitor performance , 2017 .

[29]  S. Mohamed,et al.  Spinel-structured FeCo2O4 mesoporous nanosheets as efficient electrode for supercapacitor applications , 2017 .

[30]  Jun Wang,et al.  High-performance all-solid-state asymmetrical supercapacitors based on petal-like NiCo2S4/Polyaniline nanosheets , 2017 .

[31]  Yefeng Yao,et al.  Carbon-incorporated Janus-type Ni2P/Ni hollow spheres for high performance hybrid supercapacitors , 2017 .

[32]  Guang Li,et al.  Phase engineering of cobalt hydroxides using magnetic fields for enhanced supercapacitor performance , 2017 .

[33]  Wei You,et al.  Hierarchical flower-like C/NiO composite hollow microspheres and its excellent supercapacitor performance , 2017 .

[34]  Ghim Wei Ho,et al.  In Situ Transformation of MOFs into Layered Double Hydroxide Embedded Metal Sulfides for Improved Electrocatalytic and Supercapacitive Performance , 2017, Advanced materials.

[35]  Y. Yamauchi,et al.  Metal-Organic Framework-Derived Nanoporous Metal Oxides toward Supercapacitor Applications: Progress and Prospects. , 2017, ACS nano.

[36]  John Wang,et al.  Rational Design of Metal‐Organic Framework Derived Hollow NiCo2O4 Arrays for Flexible Supercapacitor and Electrocatalysis , 2017 .

[37]  Nageh K. Allam,et al.  One-step, calcination-free synthesis of zinc cobaltite nanospheres for high-performance supercapacitors , 2017 .

[38]  Ruixue Lv,et al.  Novel amorphous nickel sulfide@CoS double-shelled polyhedral nanocages for supercapacitor electrode materials with superior electrochemical properties , 2017 .

[39]  Jiaguo Yu,et al.  Hierarchical porous C/MnO2 composite hollow microspheres with enhanced supercapacitor performance , 2017 .

[40]  D. He,et al.  Facile synthesis of ultrathin NiCo2S4 nano-petals inspired by blooming buds for high-performance supercapacitors , 2017 .

[41]  Z. Liu,et al.  Convenient and large-scale synthesis of hollow graphene-like nanocages for electrochemical supercapacitor application , 2017 .

[42]  S. Jun,et al.  Hierarchical manganese cobalt sulfide core–shell nanostructures for high-performance asymmetric supercapacitors , 2017 .

[43]  H. Khani,et al.  Iron Oxide Nanosheets and Pulse-Electrodeposited Ni-Co-S Nanoflake Arrays for High-Performance Charge Storage. , 2017, ACS applied materials & interfaces.

[44]  S. Mohajerzadeh,et al.  Nitrogen-doped amorphous carbon-silicon core-shell structures for high-power supercapacitor electrodes , 2017, Scientific Reports.

[45]  Meng Ding,et al.  NiCo2O4-Based Supercapacitor Nanomaterials , 2017, Nanomaterials.

[46]  Wei Huang,et al.  Design of Amorphous Manganese Oxide@Multiwalled Carbon Nanotube Fiber for Robust Solid-State Supercapacitor. , 2017, ACS nano.

[47]  Kefan Liu,et al.  Synthesis of hierarchical NiS microflowers for high performance asymmetric supercapacitor , 2017 .

[48]  T. Shi,et al.  Enhanced cycling stability of NiCo2S4@NiO core-shell nanowire arrays for all-solid-state asymmetric supercapacitors , 2016, Scientific Reports.

[49]  Y. Gogotsi,et al.  Synthesis of Two‐Dimensional Materials for Capacitive Energy Storage , 2016, Advanced materials.

[50]  Zhiwei Wang,et al.  Nitrogen-containing ultramicroporous carbon nanospheres for high performance supercapacitor electrodes , 2016 .

[51]  Yan Zhao,et al.  Preparation of MnCo2O4@Ni(OH)2 Core–Shell Flowers for Asymmetric Supercapacitor Materials with Ultrahigh Specific Capacitance , 2016 .

[52]  Peng Sun,et al.  In situ growth of binder-free CNTs@Ni–Co–S nanosheets core/shell hybrids on Ni mesh for high energy density asymmetric supercapacitors , 2016 .

[53]  Jianli Cheng,et al.  A Fiber Supercapacitor with High Energy Density Based on Hollow Graphene/Conducting Polymer Fiber Electrode , 2016, Advanced materials.

[54]  R. Dryfe,et al.  Electrochemical deposition of zeolitic imidazolate framework electrode coatings for supercapacitor electrodes , 2016 .

[55]  Xiangcun Li,et al.  Fe3O4 doped double-shelled hollow carbon spheres with hierarchical pore network for durable high-performance supercapacitor , 2016 .

[56]  John M. Griffin,et al.  New Perspectives on the Charging Mechanisms of Supercapacitors , 2016, Journal of the American Chemical Society.

[57]  Linbing Sun,et al.  Magnetically Responsive Core–Shell Fe3O4@C Adsorbents for Efficient Capture of Aromatic Sulfur and Nitrogen Compounds , 2016 .

[58]  Bo Wang,et al.  Metal–organic frameworks for energy storage: Batteries and supercapacitors , 2016 .

[59]  Hae-Kwon Jeong,et al.  Heteroepitaxially grown zeolitic imidazolate framework membranes with unprecedented propylene/propane separation performances. , 2015, Journal of the American Chemical Society.

[60]  H. Zeng,et al.  Two-Dimensional, Porous Nickel-Cobalt Sulfide for High-Performance Asymmetric Supercapacitors. , 2015, ACS applied materials & interfaces.

[61]  J. P. Olivier,et al.  Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report) , 2015 .

[62]  X. Lou,et al.  Formation of nickel cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties , 2015, Nature Communications.

[63]  Jayan Thomas,et al.  Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions , 2015 .

[64]  Abraham L. Jurovitzki,et al.  Fabrication and characterization of titania nanotube/cobalt sulfide supercapacitor electrode in various electrolytes , 2015 .

[65]  Xu Li,et al.  Synthesis of amorphous cobalt sulfide polyhedral nanocages for high performance supercapacitors , 2014 .

[66]  Majid Beidaghi,et al.  Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of micro-supercapacitors , 2014 .

[67]  X. Jiao,et al.  LDH nanocages synthesized with MOF templates and their high performance as supercapacitors. , 2013, Nanoscale.

[68]  Hongwei He,et al.  CoxNi1−x double hydroxide nanoparticles with ultrahigh specific capacitances as supercapacitor electrode materials , 2012 .

[69]  Min Wei,et al.  Preparation of Fe3O4@SiO2@layered double hydroxide core-shell microspheres for magnetic separation of proteins. , 2012, Journal of the American Chemical Society.

[70]  P. Simon,et al.  Electrochemical Capacitors for Energy Management , 2008, Science.

[71]  Balakrishnan Kirubasankar,et al.  2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications , 2019, Chemical Engineering Journal.