Gaining understanding of multivariate and multidimensional data through visualization

Abstract High dimensionality is a major challenge for data visualization. Parameter optimization problems require an understanding of the behaviour of the objective function in the n -dimensional space around the optimum—this is multidimensional visualization and is the traditional domain of scientific visualization. Large data tables require us to understand the relationship between attributes in the table—this is multivariate visualization and is an important aspect of information visualization. Common to both types of ‘high-dimensional’ visualization is a need to reduce the dimensionality for display. In this paper we present a uniform approach to the filtering of both multidimensional and multivariate data, to allow extraction of data subject to constraints on their position or value within an n -dimensional window, and on choice of dimensions for display. A simple example of understanding the trajectory of solutions from an optimization algorithm is given—this involves a combination of multidimensional and multivariate data.

[1]  P. Toint,et al.  Testing a class of methods for solving minimization problems with simple bounds on the variables , 1988 .

[2]  Georges G. Grinstein,et al.  Iconographic Displays For Visualizing Multidimensional Data , 1988, Proceedings of the 1988 IEEE International Conference on Systems, Man, and Cybernetics.

[3]  Chris North,et al.  Snap-Together Visualization: A User Interface for Coordinating Visualizations via Relational Schemata , 2003 .

[4]  Matthew O. Ward,et al.  Visual Hierarchical Dimension Reduction for Exploration of High Dimensional Datasets , 2003, VisSym.

[5]  Herman Chernoff,et al.  The Use of Faces to Represent Points in k- Dimensional Space Graphically , 1973 .

[6]  Jarke J. van Wijk,et al.  HyperSlice - Visualization of Scalar Functions of Many Variables , 1993, IEEE Visualization.

[7]  William Schroeder,et al.  The Visualization Toolkit: An Object-Oriented Approach to 3-D Graphics , 1997 .

[8]  Angel R. Martinez,et al.  Computational Statistics Handbook with MATLAB , 2001 .

[9]  Åke Wallin,et al.  Constructing isosurfaces from CT data , 1991, IEEE Computer Graphics and Applications.

[10]  Ed H. Chi,et al.  A taxonomy of visualization techniques using the data state reference model , 2000, IEEE Symposium on Information Visualization 2000. INFOVIS 2000. Proceedings.

[11]  D. F. Andrews,et al.  PLOTS OF HIGH-DIMENSIONAL DATA , 1972 .

[12]  Ted Mihalisin,et al.  Visualizing multivariate functions, data, and distributions , 1991, IEEE Computer Graphics and Applications.

[13]  Chris North,et al.  A user interface for coordinating visualizations based on relational schemata: snap-together visualization , 2000 .

[14]  Alfred Inselberg,et al.  Parallel coordinates: a tool for visualizing multi-dimensional geometry , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[15]  B. H. McCormick,et al.  Visualization in scientific computing , 1995 .

[16]  Steven K. Feiner,et al.  Worlds within worlds: metaphors for exploring n-dimensional virtual worlds , 1990, UIST '90.

[17]  Andrew W. Mead Review of the Development of Multidimensional Scaling Methods , 1992 .

[18]  James T. Enns,et al.  Large Datasets at a Glance: Combining Textures and Colors in Scientific Visualization , 1999, IEEE Trans. Vis. Comput. Graph..

[19]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[20]  Daniel A. Keim,et al.  Designing Pixel-Oriented Visualization Techniques: Theory and Applications , 2000, IEEE Trans. Vis. Comput. Graph..

[21]  J. V. van Wijk,et al.  HyperSlice: visualization of scalar functions of many variables , 1993, VIS '93.

[22]  Andrzej Osyczka,et al.  7 – Multicriteria optimization for engineering design , 1985 .

[23]  J. J. vanWijk,et al.  Visualization of multi-dimensional scalar functions using hyperslice , 1994 .

[24]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[25]  Hans Hagen,et al.  Scientific Visualization: Overviews, Methodologies, and Techniques , 1997 .

[26]  Ken Brodlie,et al.  Visualizing and Investigating Multidimensional Functions , 2002, VisSym.

[27]  Anselm Spoerri,et al.  InfoCrystal: A visual tool for information retrieval , 1993, Proceedings Visualization '93.

[28]  A KeimDaniel Designing Pixel-Oriented Visualization Techniques , 2000 .

[29]  Victoria Interrante,et al.  Harnessing natural textures for multivariate visualization , 2000, IEEE Computer Graphics and Applications.

[30]  Peter L. Brooks,et al.  Visualizing data , 1997 .