Assessing Hubbard-corrected AM05+U and PBEsol+U density functionals for strongly correlated oxides CeO2 and Ce2O3.

The structure-property relationships of bulk CeO2 and Ce2O3 have been investigated using AM05 and PBEsol exchange-correlation functionals within the frameworks of Hubbard-corrected density functional theory (DFT+U) and density functional perturbation theory (DFPT+U). Compared with conventional PBE+U, RPBE+U, PW91+U and LDA+U functionals, AM05+U and PBEsol+U describe experimental crystalline parameters and properties of CeO2 and Ce2O3 with superior accuracy, especially when +U is chosen close to its value derived by the linear-response approach. The present findings call for a reexamination of some of the problematic oxide materials featuring strong f- and d-electron correlation using AM05+U and PBEsol+U.

[1]  W. Evans,et al.  Comparison of the high-pressure behavior of the cerium oxides C e 2 O 3 and Ce O 2 , 2016 .

[2]  B. Li,et al.  NO reduction by CO over CuO supported on CeO2-doped TiO2: the effect of the amount of a few CeO2. , 2015, Physical chemistry chemical physics : PCCP.

[3]  R. Kumari,et al.  Effect of grain size and microstructure on radiation stability of CeO2: an extensive study. , 2014, Physical chemistry chemical physics : PCCP.

[4]  Franccois-Xavier Coudert,et al.  Necessary and Sufficient Elastic Stability Conditions in Various Crystal Systems , 2014, 1410.0065.

[5]  G. Ji,et al.  Elastic and electronic properties of Ce2O3 from first principles , 2013 .

[6]  David D. O'Regan,et al.  Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems , 2011 .

[7]  C. Zicovich-Wilson,et al.  Comparative Study on the Performance of Hybrid DFT Functionals in Highly Correlated Oxides: The Case of CeO2 and Ce2O3. , 2011, Journal of chemical theory and computation.

[8]  B. Meredig,et al.  Method for locating low-energy solutions within DFT+U , 2010 .

[9]  K. Hermansson,et al.  B3LYP calculations of cerium oxides. , 2010, The Journal of chemical physics.

[10]  F. Fujishiro,et al.  The photoluminescence properties and reversible photoinduced spectral change of CeO2 bulk, film and nanocrystals , 2009 .

[11]  B. Delley,et al.  Stability and morphology of cerium oxide surfaces in an oxidizing environment: A first-principles investigation , 2009 .

[12]  T. Çagin,et al.  Mechanical and electronic properties of CeO{sub 2}, ThO{sub 2}, and (Ce,Th)O{sub 2} alloys , 2009 .

[13]  R. Armiento,et al.  Implementing and testing the AM05 spin density functional , 2009 .

[14]  G. Kotliar,et al.  Combining the hybrid functional method with dynamical mean-field theory , 2008, 0805.1383.

[15]  K. Hermansson,et al.  Tuning LDA+U for electron localization and structure at oxygen vacancies in ceria. , 2007, The Journal of chemical physics.

[16]  J. Hrbek,et al.  Activity of CeOx and TiOx Nanoparticles Grown on Au(111) in the Water-Gas Shift Reaction , 2007, Science.

[17]  J. Karp,et al.  Nanocarriers as an Emerging Platform for Cancer Therapy , 2022 .

[18]  Juarez L. F. Da Silva,et al.  Stability of the Ce2O3 phases : A DFT+U investigation , 2007 .

[19]  G. Scuseria,et al.  Restoring the density-gradient expansion for exchange in solids and surfaces. , 2007, Physical review letters.

[20]  Georg Kresse,et al.  Hybrid functionals applied to rare-earth oxides: The example of ceria , 2007 .

[21]  Francesc Illas,et al.  First-principles LDA+U and GGA+U study of cerium oxides : Dependence on the effective U parameter , 2007 .

[22]  B. Johansson,et al.  Modeling of CeO2, Ce2O3, and CeO2−x in the LDA+U formalism , 2007 .

[23]  Gustavo E Scuseria,et al.  Theoretical study of CeO2 and Ce2O3 using a screened hybrid density functional. , 2006, The Journal of chemical physics.

[24]  R. Eryigit,et al.  Ab initio pressure-dependent vibrational and dielectric properties of CeO 2 , 2006 .

[25]  Gustavo E. Scuseria,et al.  Erratum: “Hybrid functionals based on a screened Coulomb potential” [J. Chem. Phys. 118, 8207 (2003)] , 2006 .

[26]  Y. Yamamura,et al.  Thermal expansion and Debye temperature of rare earth-doped ceria , 2006 .

[27]  M. V. Ganduglia-Pirovano,et al.  Comment on “Taming multiple valency with density functionals: A case study of defective ceria” , 2005 .

[28]  Stefano de Gironcoli,et al.  Reply to “Comment on ‘Taming multiple valency with density functionals: A case study of defective ceria' ” , 2005 .

[29]  L. Gerward,et al.  Bulk modulus of CeO2 and PrO2—An experimental and theoretical study , 2005 .

[30]  Yong Jiang,et al.  Density-functional calculation of CeO2 surfaces and prediction of effects of oxygen partial pressure and temperature on stabilities. , 2005, The Journal of chemical physics.

[31]  R. Armiento,et al.  Functional designed to include surface effects in self-consistent density functional theory , 2005 .

[32]  Stefano de Gironcoli,et al.  Taming multiple valency with density functionals: A case study of defective ceria , 2005 .

[33]  Stefano de Gironcoli,et al.  Linear response approach to the calculation of the effective interaction parameters in the LDA + U method , 2004, cond-mat/0405160.

[34]  X. Verykios,et al.  Renewable Hydrogen from Ethanol by Autothermal Reforming , 2004, Science.

[35]  M. Flytzani-Stephanopoulos,et al.  Active Nonmetallic Au and Pt Species on Ceria-Based Water-Gas Shift Catalysts , 2003, Science.

[36]  G. Scuseria,et al.  Hybrid functionals based on a screened Coulomb potential , 2003 .

[37]  Paul Saxe,et al.  Symmetry-general least-squares extraction of elastic data for strained materials from ab initio calculations of stress , 2002 .

[38]  Paolo Fornasiero,et al.  Catalysis by Ceria and Related Materials , 2002 .

[39]  M. Dresselhaus,et al.  Alternative energy technologies , 2001, Nature.

[40]  Tetsuya Hoshino,et al.  Mechanism of polishing of SiO2 films by CeO2 particles , 2001 .

[41]  Raymond J. Gorte,et al.  Direct oxidation of hydrocarbons in a solid-oxide fuel cell , 2000, Nature.

[42]  M. Boaro,et al.  The utilization of ceria in industrial catalysis , 1999 .

[43]  J. Nørskov,et al.  Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals , 1999 .

[44]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[45]  C. Humphreys,et al.  Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+U study , 1998 .

[46]  F. Aryasetiawan,et al.  The GW method , 1997, cond-mat/9712013.

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[49]  A. Prokofiev,et al.  Periodicity in the band gap variation of Ln2X3 (X = O, S, Se) in the lanthanide series , 1996 .

[50]  J. Zaanen,et al.  Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. , 1995, Physical review. B, Condensed matter.

[51]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[52]  Nakajima,et al.  Defect-induced Raman spectra in doped CeO2. , 1994, Physical review. B, Condensed matter.

[53]  Blöchl,et al.  Improved tetrahedron method for Brillouin-zone integrations. , 1994, Physical review. B, Condensed matter.

[54]  L. Gerward,et al.  Powder diffraction analysis of cerium dioxide at high pressure , 1993, Powder Diffraction.

[55]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[56]  H.-J. Beie,et al.  Oxygen gas sensors based on CeO2 thick and thin films , 1991 .

[57]  Paxton,et al.  High-precision sampling for Brillouin-zone integration in metals. , 1989, Physical review. B, Condensed matter.

[58]  Jayaraman,et al.  High-pressure x-ray diffraction study of CeO2 to 70 GPa and pressure-induced phase transformation from the fluorite structure. , 1988, Physical review. B, Condensed matter.

[59]  H. Bärnighausen,et al.  The crystal structure of A-Ce2O3☆ , 1985 .

[60]  R. I. Taylor,et al.  A quantitative demonstration of the grain boundary diffusion mechanism for the oxidation of metals , 1982 .

[61]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[62]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[63]  J. Nye Physical Properties of Crystals: Their Representation by Tensors and Matrices , 1957 .

[64]  S. Pugh XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals , 1954 .

[65]  R. Hill The Elastic Behaviour of a Crystalline Aggregate , 1952 .

[66]  R. Fürth,et al.  The Stability of Crystal Lattices , 1940, Mathematical Proceedings of the Cambridge Philosophical Society.

[67]  O. Viagin,et al.  Formation of luminescent centers in CeO2 nanocrystals , 2014 .

[68]  W. Krauth,et al.  Dynamical mean-field theory of strongly correlated fermion systems and the limit of infinite dimensions , 1996 .

[69]  K. Clausen,et al.  Inelastic neutron scattering investigation of the lattice dynamics of ThO2 and CeO2 , 1987 .

[70]  Ernest R. Davidson,et al.  Matrix Eigenvector Methods , 1983 .

[71]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .