Chrna2-Martinotti Cells Synchronize Layer 5 Type A Pyramidal Cells via Rebound Excitation

Martinotti cells are the most prominent distal dendrite–targeting interneurons in the cortex, but their role in controlling pyramidal cell (PC) activity is largely unknown. Here, we show that the nicotinic acetylcholine receptor α2 subunit (Chrna2) specifically marks layer 5 (L5) Martinotti cells projecting to layer 1. Furthermore, we confirm that Chrna2-expressing Martinotti cells selectively target L5 thick-tufted type A PCs but not thin-tufted type B PCs. Using optogenetic activation and inhibition, we demonstrate how Chrna2-Martinotti cells robustly reset and synchronize type A PCs via slow rhythmic burst activity and rebound excitation. Moreover, using optical feedback inhibition, in which PC spikes controlled the firing of surrounding Chrna2-Martinotti cells, we found that neighboring PC spike trains became synchronized by Martinotti cell inhibition. Together, our results show that L5 Martinotti cells participate in defined cortical circuits and can synchronize PCs in a frequency-dependent manner. These findings suggest that Martinotti cells are pivotal for coordinated PC activity, which is involved in cortical information processing and cognitive control.

[1]  E. G. Jones Cerebral Cortex , 1987, Cerebral Cortex.

[2]  F. Eckenstein,et al.  An anatomical study of cholinergic innervation in rat cerebral cortex , 1988, Neuroscience.

[3]  B. Connors,et al.  Intrinsic firing patterns of diverse neocortical neurons , 1990, Trends in Neurosciences.

[4]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[5]  Y. Kubota,et al.  GABAergic cell subtypes and their synaptic connections in rat frontal cortex. , 1997, Cerebral cortex.

[6]  D. Prince,et al.  Cholinergic switching within neocortical inhibitory networks. , 1998, Science.

[7]  D. McGehee Molecular Diversity of Neuronal Nicotinic Acetylcholine Receptors , 1999, Annals of the New York Academy of Sciences.

[8]  B. Connors,et al.  Two networks of electrically coupled inhibitory neurons in neocortex , 1999, Nature.

[9]  Karen L. Smith,et al.  Novel Hippocampal Interneuronal Subtypes Identified Using Transgenic Mice That Express Green Fluorescent Protein in GABAergic Interneurons , 2000, The Journal of Neuroscience.

[10]  Maria V. Sanchez-Vives,et al.  Cellular and network mechanisms of rhythmic recurrent activity in neocortex , 2000, Nature Neuroscience.

[11]  Serge Charpak,et al.  Two types of nicotinic receptors mediate an excitation of neocortical layer I interneurons. , 2002, Journal of neurophysiology.

[12]  Rafael Yuste,et al.  Global dendritic calcium spikes in mouse layer 5 low threshold spiking interneurones: implications for control of pyramidal cell bursting , 2004, The Journal of physiology.

[13]  H. Markram,et al.  Anatomical, physiological and molecular properties of Martinotti cells in the somatosensory cortex of the juvenile rat , 2004, The Journal of physiology.

[14]  H. Markram,et al.  Interneurons of the neocortical inhibitory system , 2004, Nature Reviews Neuroscience.

[15]  A. Agmon,et al.  Distinct Subtypes of Somatostatin-Containing Neocortical Interneurons Revealed in Transgenic Mice , 2006, The Journal of Neuroscience.

[16]  Allan R. Jones,et al.  Genome-wide atlas of gene expression in the adult mouse brain , 2007, Nature.

[17]  Hannah Monyer,et al.  Functional Characterization of Intrinsic Cholinergic Interneurons in the Cortex , 2007, The Journal of Neuroscience.

[18]  H. Markram,et al.  Morphological, Electrophysiological, and Synaptic Properties of Corticocallosal Pyramidal Cells in the Neonatal Rat Neocortex , 2006 .

[19]  Yasuo Kawaguchi,et al.  Heterogeneity of phasic cholinergic signaling in neocortical neurons. , 2007, Journal of neurophysiology.

[20]  R. J. Brennan,et al.  Nicotine gates long‐term potentiation in the hippocampal CA1 region via the activation of α2* nicotinic ACh receptors , 2007, The European journal of neuroscience.

[21]  Huibert D. Mansvelder,et al.  Distributed Network Actions by Nicotine Increase the Threshold for Spike-Timing-Dependent Plasticity in Prefrontal Cortex , 2007, Neuron.

[22]  H. Markram,et al.  Disynaptic Inhibition between Neocortical Pyramidal Cells Mediated by Martinotti Cells , 2007, Neuron.

[23]  Massimo Scanziani,et al.  Supralinear increase of recurrent inhibition during sparse activity in the somatosensory cortex , 2007, Nature Neuroscience.

[24]  D. Bertrand,et al.  Up-regulation of Nicotinic Receptors by Nicotine Varies with Receptor Subtype* , 2008, Journal of Biological Chemistry.

[25]  Erika E Fanselow,et al.  Selective, state-dependent activation of somatostatin-expressing inhibitory interneurons in mouse neocortex. , 2008, Journal of neurophysiology.

[26]  Michael Okun,et al.  Instantaneous correlation of excitation and inhibition during ongoing and sensory-evoked activities , 2008, Nature Neuroscience.

[27]  W. Senn,et al.  Dendritic encoding of sensory stimuli controlled by deep cortical interneurons , 2009, Nature.

[28]  Thomas K. Berger,et al.  Frequency‐dependent disynaptic inhibition in the pyramidal network: a ubiquitous pathway in the developing rat neocortex , 2009, The Journal of physiology.

[29]  K. Deisseroth,et al.  Parvalbumin neurons and gamma rhythms enhance cortical circuit performance , 2009, Nature.

[30]  S. Hestrin,et al.  Intracortical circuits of pyramidal neurons reflect their long-range axonal targets , 2009, Nature.

[31]  Fiona E. N. LeBeau,et al.  Cholinergic Neuromodulation Controls Directed Temporal Communication in Neocortex in Vitro , 2010, Front. Neural Circuits.

[32]  Erika E Fanselow,et al.  The roles of somatostatin-expressing (GIN) and fast-spiking inhibitory interneurons in UP-DOWN states of mouse neocortex. , 2010, Journal of neurophysiology.

[33]  Thomas K. Berger,et al.  Brief Bursts Self-Inhibit and Correlate the Pyramidal Network , 2010, PLoS biology.

[34]  R. Yuste,et al.  Dense Inhibitory Connectivity in Neocortex , 2011, Neuron.

[35]  KouichiC . Nakamura,et al.  Expression of gap junction protein connexin36 in multiple subtypes of GABAergic neurons in adult rat somatosensory cortex. , 2011, Cerebral cortex.

[36]  N Kopell,et al.  Neuronal assembly dynamics in the beta1 frequency range permits short-term memory , 2011, Proceedings of the National Academy of Sciences.

[37]  G. Fishell,et al.  Three groups of interneurons account for nearly 100% of neocortical GABAergic neurons , 2011, Developmental neurobiology.

[38]  S. Nelson,et al.  A Resource of Cre Driver Lines for Genetic Targeting of GABAergic Neurons in Cerebral Cortex , 2011, Neuron.

[39]  Corbett Bennett,et al.  Prolonged Disynaptic Inhibition in the Cortex Mediated by Slow, Non-α7 Nicotinic Excitation of a Specific Subset of Cortical Interneurons , 2012, The Journal of Neuroscience.

[40]  Adriano B. L. Tort,et al.  OLM interneurons differentially modulate CA3 and entorhinal inputs to hippocampal CA1 neurons , 2012, Nature Neuroscience.

[41]  Michael Small,et al.  Control of layer 5 pyramidal cell spiking by oscillatory inhibition in the distal apical dendrites: a computational modeling study. , 2013, Journal of neurophysiology.

[42]  C. D. Fowler,et al.  Targeted Deletion of the Mouse α2 Nicotinic Acetylcholine Receptor Subunit Gene (Chrna2) Potentiates Nicotine-Modulated Behaviors , 2013, The Journal of Neuroscience.

[43]  P. Ascher,et al.  Subunit composition and kinetics of the Renshaw cell heteromeric nicotinic receptors. , 2013, Biochemical pharmacology.

[44]  Ariel Agmon,et al.  Not all that glitters is gold: off-target recombination in the somatostatin–IRES-Cre mouse line labels a subset of fast-spiking interneurons , 2013, Front. Neural Circuits.

[45]  Miles A. Whittington,et al.  Top-Down Beta Rhythms Support Selective Attention via Interlaminar Interaction: A Model , 2013, PLoS Comput. Biol..

[46]  R. Tremblay,et al.  Neocortical Somatostatin-Expressing GABAergic Interneurons Disinhibit the Thalamorecipient Layer 4 , 2013, Neuron.

[47]  Markus M. Hilscher,et al.  Synchronization through nonreciprocal connections in a hybrid hippocampus microcircuit , 2013, Front. Neural Circuits.

[48]  Z Josh Huang,et al.  Toward a Genetic Dissection of Cortical Circuits in the Mouse , 2014, Neuron.

[49]  J. Rubenstein,et al.  Pyramidal Neurons in Prefrontal Cortex Receive Subtype-Specific Forms of Excitation and Inhibition , 2014, Neuron.

[50]  I. Stanford,et al.  Spike Firing and IPSPs in Layer V Pyramidal Neurons during Beta Oscillations in Rat Primary Motor Cortex (M1) In Vitro , 2014, PloS one.

[51]  K. Deisseroth,et al.  Advanced CLARITY for rapid and high-resolution imaging of intact tissues , 2014, Nature Protocols.

[52]  Rafael Yuste,et al.  A blanket of inhibition: functional inferences from dense inhibitory connectivity , 2014, Current Opinion in Neurobiology.

[53]  H. Taniguchi Genetic dissection of GABAergic neural circuits in mouse neocortex , 2014, Front. Cell. Neurosci..

[54]  I. Skaliora,et al.  High-Affinity Nicotinic Receptors Modulate Spontaneous Cortical Up States In Vitro , 2015, The Journal of Neuroscience.

[55]  M. Hasselmo,et al.  Rebound spiking properties of mouse medial entorhinal cortex neurons in vivo , 2015, The European journal of neuroscience.

[56]  E. Callaway,et al.  Three Types of Cortical Layer 5 Neurons That Differ in Brain-wide Connectivity and Function , 2015, Neuron.

[57]  Miles A Whittington,et al.  Potential Mechanisms Underlying Intercortical Signal Regulation via Cholinergic Neuromodulators , 2015, The Journal of Neuroscience.

[58]  Markus M. Hilscher,et al.  Firing properties of Renshaw cells defined by Chrna2 are modulated by hyperpolarizing and small conductance ion currents Ih and ISK , 2015, The European journal of neuroscience.

[59]  G. Shepherd,et al.  The neocortical circuit: themes and variations , 2015, Nature Neuroscience.

[60]  H. Markram,et al.  Anatomy and physiology of the thick-tufted layer 5 pyramidal neuron , 2015, Front. Cell. Neurosci..

[61]  Alison L. Barth,et al.  Neocortical Somatostatin Neurons Reversibly Silence Excitatory Transmission via GABAb Receptors , 2015, Current Biology.

[62]  R. Yuste,et al.  Opening Holes in the Blanket of Inhibition: Localized Lateral Disinhibition by VIP Interneurons , 2016, The Journal of Neuroscience.

[63]  Rafael Yuste,et al.  Cooperative Subnetworks of Molecularly Similar Interneurons in Mouse Neocortex , 2016, Neuron.

[64]  Christopher F. Shay,et al.  Post‐Inhibitory Rebound Spikes in Rat Medial Entorhinal Layer II/III Principal Cells: In Vivo, In Vitro, and Computational Modeling Characterization , 2016, Cerebral cortex.