SEARCH FOR PRECURSOR ERUPTIONS AMONG TYPE IIB SUPERNOVAE

The progenitor stars of several Type IIb supernovae (SNe) show indications of extended hydrogen envelopes. These envelopes might be the outcome of luminous energetic pre-explosion events, so-called precursor eruptions. We use the Palomar Transient Factory (PTF) pre-explosion observations of a sample of 27 nearby SNe IIb to look for such precursors during the final years prior to the SN explosion. No precursors are found when combining the observations in 15-day bins, and we calculate the absolute-magnitude-dependent upper limit on the precursor rate. At the 90% confidence level, SNe IIb have on average <0.86 precursors as bright as an absolute R-band magnitude of −14 in the final 3.5 years before the explosion and <0.56 events over the final year. In contrast, precursors among SNe IIn have a ≳5 times higher rate. The kinetic energy required to unbind a low-mass stellar envelope is comparable to the radiated energy of a few-weeks-long precursor that would be detectable for the closest SNe in our sample. Therefore, mass ejections, if they are common in such SNe, are radiatively inefficient or have durations longer than months. Indeed, when using 60-day bins, a faint precursor candidate is detected prior to SN 2012cs (∼2% false-alarm probability). We also report the detection of the progenitor of SN 2011dh that does not show detectable variability over the final two years before the explosion. The suggested progenitor of SN 2012P is still present, and hence is likely a compact star cluster or an unrelated object.

[1]  Tucson,et al.  ULTRAVIOLET SPECTROSCOPY OF TYPE IIB SUPERNOVAE: DIVERSITY AND THE IMPACT OF CIRCUMSTELLAR MATERIAL , 2014, 1412.4767.

[2]  S. Valenti,et al.  SN 2013df, a double-peaked IIb supernova from a compact progenitor and an extended H envelope , 2014, 1409.2784.

[3]  R. Kotak,et al.  The Type IIb SN 2011dh: Two years of observations and modelling of the lightcurves , 2014, 1408.0731.

[4]  H. Kuncarayakti,et al.  A BLUE POINT SOURCE AT THE LOCATION OF SUPERNOVA 2011DH , 2014, 1409.0700.

[5]  Carnegie,et al.  A Wolf–Rayet-like progenitor of SN 2013cu from spectral observations of a stellar wind , 2014, Nature.

[6]  Carl J. Grillmair,et al.  IPAC Image Processing and Data Archiving for the Palomar Transient Factory , 2014, 1404.1953.

[7]  E. Nakar,et al.  SUPERNOVAE WITH TWO PEAKS IN THE OPTICAL LIGHT CURVE AND THE SIGNATURE OF PROGENITORS WITH LOW-MASS EXTENDED ENVELOPES , 2014, 1401.7013.

[8]  E. Ofek,et al.  PRECURSORS PRIOR TO TYPE IIn SUPERNOVA EXPLOSIONS ARE COMMON: PRECURSOR RATES, PROPERTIES, AND CORRELATIONS , 2014, 1401.5468.

[9]  William H. Lee,et al.  THE TYPE IIb SUPERNOVA 2013df AND ITS COOL SUPERGIANT PROGENITOR , 2013, 1312.3984.

[10]  R. Kotak,et al.  Optical and near-infrared observations of SN 2011dh – The first 100 days , 2013, 1305.1851.

[11]  A. Drake,et al.  DETECTION OF AN OUTBURST ONE YEAR PRIOR TO THE EXPLOSION OF SN 2011ht , 2013, 1309.4695.

[12]  E. Quataert,et al.  SETTING THE STAGE FOR CIRCUMSTELLAR INTERACTION IN CORE-COLLAPSE SUPERNOVAE. II. WAVE-DRIVEN MASS LOSS IN SUPERNOVA PROGENITORS , 2013, 1308.5978.

[13]  D. Frail,et al.  A MULTI-WAVELENGTH INVESTIGATION OF THE RADIO-LOUD SUPERNOVA PTF11qcj AND ITS CIRCUMSTELLAR ENVIRONMENT , 2013, 1307.2366.

[14]  Charles Baltay,et al.  The La Silla-QUEST Low Redshift Supernova Survey , 2013 .

[15]  J. Sollerman,et al.  TYPE IIb SUPERNOVA SN 2011dh: SPECTRA AND PHOTOMETRY FROM THE ULTRAVIOLET TO THE NEAR-INFRARED , 2013, 1303.5482.

[16]  E. Ofek,et al.  An outburst from a massive star 40 days before a supernova explosion , 2013, Nature.

[17]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[18]  Kelsey I. Clubb,et al.  The Unprecedented Third Outburst of SN 2009ip: A Luminous Blue Variable Becomes a Supernova , 2012, 1209.6320.

[19]  D. Frail,et al.  An early and comprehensive millimetre and centimetre wave and X-ray study of SN 2011dh: a non-equipartition blast wave expanding into a massive stellar wind , 2012, 1209.1102.

[20]  M. L. Pumo,et al.  Spectroscopic classification of 2 PSN , 2012 .

[21]  R. Kotak,et al.  THE TYPE IIb SUPERNOVA 2011dh FROM A SUPERGIANT PROGENITOR , 2012, 1207.5975.

[22]  O. Benvenuto,et al.  A BINARY PROGENITOR FOR THE TYPE IIb SUPERNOVA 2011dh IN M51 , 2012, 1207.5807.

[23]  N. Langer,et al.  Presupernova Evolution of Massive Single and Binary Stars , 2012, 1206.5443.

[24]  E. Ofek,et al.  The Palomar Transient Factory photometric catalog 1.0 , 2012, 1206.1064.

[25]  D. Milisavljevic,et al.  Supernova 2012cs in IC 1129 = Psn J15315765+6814428 , 2012 .

[26]  R. Chevalier COMMON ENVELOPE EVOLUTION LEADING TO SUPERNOVAE WITH DENSE INTERACTION , 2012, 1204.3300.

[27]  A. Gal-yam,et al.  WISeREP—An Interactive Supernova Data Repository , 2012, 1204.1891.

[28]  R. Kotak,et al.  Supernova 2012an in NGC 6373 = PSN J17241023+5900069. , 2012 .

[29]  E. Quataert,et al.  Wave‐driven mass loss in the last year of stellar evolution: setting the stage for the most luminous core‐collapse supernovae , 2012, 1202.5036.

[30]  C. Kochanek,et al.  DISCOVERY OF VARIABILITY OF THE PROGENITOR OF SN 2011dh IN M 51 USING THE LARGE BINOCULAR TELESCOPE , 2011, 1110.2783.

[31]  A. Horesh,et al.  A Search for the Progenitor of Supernova PTF12os (PSN J14595904+0153251) , 2012 .

[32]  D. Fox,et al.  PTF12os / PSN J14595904+0153251 is a Type IIb Supernova , 2012 .

[33]  M. Sullivan,et al.  The Palomar Transient Factory Photometric Calibration , 2011, 1112.4851.

[34]  P. Berlind,et al.  Supernova 2011hg in UGC 12410 , 2011 .

[35]  David Polishook,et al.  SN 2011dh: DISCOVERY OF A TYPE IIb SUPERNOVA FROM A COMPACT PROGENITOR IN THE NEARBY GALAXY M51 , 2011, 1106.3551.

[36]  E. Ofek,et al.  THE PROGENITOR OF SUPERNOVA 2011dh/PTF11eon IN MESSIER 51 , 2011, 1106.2897.

[37]  R. Kotak,et al.  THE YELLOW SUPERGIANT PROGENITOR OF THE TYPE II SUPERNOVA 2011dh IN M51 , 2011, 1106.2565.

[38]  S. Cenko,et al.  Supernova 2011dh in M51 = Psn J13303600+4706330 , 2011 .

[39]  W. Arnett,et al.  TOWARD REALISTIC PROGENITORS OF CORE-COLLAPSE SUPERNOVAE , 2011, 1101.5646.

[40]  W. David Arnett,et al.  TURBULENT CELLS IN STARS: FLUCTUATIONS IN KINETIC ENERGY AND LUMINOSITY , 2010, 1012.1848.

[41]  Richard Walters,et al.  CORE-COLLAPSE SUPERNOVAE FROM THE PALOMAR TRANSIENT FACTORY: INDICATIONS FOR A DIFFERENT POPULATION IN DWARF GALAXIES , 2010, 1004.0615.

[42]  R. Foley,et al.  THE TRANSITIONAL STRIPPED-ENVELOPE SN 2008ax: SPECTRAL EVOLUTION AND EVIDENCE FOR LARGE ASPHERICITY , 2010, 1001.2775.

[43]  A. Soderberg,et al.  TYPE IIb SUPERNOVAE WITH COMPACT AND EXTENDED PROGENITORS , 2009, 0911.3408.

[44]  S. Blinnikov,et al.  Photometric observations and modeling of type IIb supernova 2008ax , 2009, 0910.4242.

[45]  Ernest E. Croner,et al.  The Palomar Transient Factory: System Overview, Performance, and First Results , 2009, 0906.5350.

[46]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[47]  A. J. Drake,et al.  FIRST RESULTS FROM THE CATALINA REAL-TIME TRANSIENT SURVEY , 2008, 0809.1394.

[48]  D. M. Bramich,et al.  A new algorithm for difference image analysis , 2008, 0802.1273.

[49]  A. Pastorello,et al.  A giant outburst two years before the core-collapse of a massive star , 2007, Nature.

[50]  Mohan Ganeshalingam,et al.  SN 2006jc: A Wolf-Rayet Star Exploding in a Dense He-rich Circumstellar Medium , 2006, astro-ph/0612711.

[51]  J. Tonry,et al.  Determining the Type, Redshift, and Age of a Supernova Spectrum , 2006, astro-ph/0612512.

[52]  J. Neill,et al.  Gemini Spectroscopy of Supernovae from the Supernova Legacy Survey: Improving High-Redshift Supernova Selection and Classification , 2005, astro-ph/0509195.

[53]  Walter A. Siegmund,et al.  Design of the Pan‐STARRS telescopes , 2004 .

[54]  N. Shaviv The theory of steady‐state super‐Eddington winds and its application to novae , 2000, astro-ph/0008489.

[55]  A. Filippenko,et al.  The Lick Observatory Supernova Search , 1999, astro-ph/9912336.

[56]  Robert Lupton,et al.  A Modified Magnitude System that Produces Well-Behaved Magnitudes, Colors, and Errors Even for Low Signal-to-Noise Ratio Measurements , 1999, astro-ph/9903081.

[57]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[58]  R. Lupton,et al.  A Method for Optimal Image Subtraction , 1997, astro-ph/9712287.

[59]  D. Schlegel,et al.  Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.

[60]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[61]  T. Matheson,et al.  The peculiar type II supernova 1993J in M81: Transition to the nebular phase , 1994 .

[62]  S. Woosley,et al.  SN 1993J: A Type IIb supernova , 1994 .

[63]  L. Ho,et al.  The ``Type IIb'' Supernova 1993J in M81: A Close Relative of Type Ib Supernovae , 1993 .

[64]  Dan F. Lester,et al.  Early observations of SN 1993J in M81 at McDonald observatory , 1993 .

[65]  J. Mathis,et al.  The relationship between infrared, optical, and ultraviolet extinction , 1989 .

[66]  A. Filippenko,et al.  Supernova 1987K: Type II in Youth, Type Ib in Old Age , 1988 .

[67]  B. Efron The jackknife, the bootstrap, and other resampling plans , 1987 .

[68]  N. Gehrels Confidence limits for small numbers of events in astrophysical data , 1986 .

[69]  G. Shaviv,et al.  INSTABILITIES IN HIGHLY EVOLVED STELLAR MODELS. , 1967 .