Committee-Based Active Learning to Select Negative Examples for Predicting Protein Functions
暂无分享,去创建一个
Giuliano Grossi | Alessandro Petrini | Marco Frasca | Maryam Sepehri | Giorgio Valentini | G. Valentini | G. Grossi | M. Frasca | A. Petrini | Maryam Sepehri
[1] Shlomo Argamon,et al. Committee-Based Sampling For Training Probabilistic Classi(cid:12)ers , 1995 .
[2] Quaid Morris,et al. Using the Gene Ontology Hierarchy when Predicting Gene Function , 2009, UAI.
[3] Giorgio Valentini,et al. UNIPred: Unbalance-Aware Network Integration and Prediction of Protein Functions , 2015, J. Comput. Biol..
[4] Dario Malchiodi,et al. Analysis of Informative Features for Negative Selection in Protein Function Prediction , 2017, IWBBIO.
[5] F. Wilcoxon. Individual Comparisons by Ranking Methods , 1945 .
[6] Vladimir N. Vapnik,et al. The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.
[7] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[8] Dario Malchiodi,et al. Evaluating the impact of topological protein features on the negative examples selection , 2018, BMC Bioinformatics.
[9] Giorgio Valentini,et al. COSNet: A Cost Sensitive Neural Network for Semi-supervised Learning in Graphs , 2011, ECML/PKDD.
[10] Naoki Abe,et al. Query Learning Strategies Using Boosting and Bagging , 1998, ICML.
[11] Davide Heller,et al. STRING v10: protein–protein interaction networks, integrated over the tree of life , 2014, Nucleic Acids Res..
[12] Tapio Salakoski,et al. An expanded evaluation of protein function prediction methods shows an improvement in accuracy , 2016, Genome Biology.
[13] L. Asz. Random Walks on Graphs: a Survey , 2022 .
[14] Duane Szafron,et al. Improving Protein Function Prediction using the Hierarchical Structure of the Gene Ontology , 2005, 2005 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology.
[15] Slobodan Vucetic,et al. MS-kNN: protein function prediction by integrating multiple data sources , 2013, BMC Bioinformatics.
[16] M. Ashburner,et al. Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.
[17] Dennis Shasha,et al. Parametric Bayesian priors and better choice of negative examples improve protein function prediction , 2013, Bioinform..
[18] C. Gini. Variabilità e mutabilità : contributo allo studio delle distribuzioni e delle relazioni statistiche , 1912 .
[19] Raymond J. Mooney,et al. Diverse ensembles for active learning , 2004, ICML.
[20] Giulio Pavesi,et al. A neural network based algorithm for gene expression prediction from chromatin structure , 2013, The 2013 International Joint Conference on Neural Networks (IJCNN).
[21] H. Sebastian Seung,et al. Selective Sampling Using the Query by Committee Algorithm , 1997, Machine Learning.
[22] Zoubin Ghahramani,et al. Combining active learning and semi-supervised learning using Gaussian fields and harmonic functions , 2003, ICML 2003.
[23] Giorgio Valentini,et al. A Fast Ranking Algorithm for Predicting Gene Functions in Biomolecular Networks , 2012, IEEE/ACM Transactions on Computational Biology and Bioinformatics.
[24] Alicia Karspeck,et al. Comparison of Filtering Methods for the Modeling and Retrospective Forecasting of Influenza Epidemics , 2014, PLoS Comput. Biol..
[25] Nello Cristianini,et al. An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .
[26] B. Schwikowski,et al. A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.
[27] Dennis Shasha,et al. Negative Example Selection for Protein Function Prediction: The NoGO Database , 2014, PLoS Comput. Biol..