Regulation of riboflavin biosynthesis and transport genes in bacteria by transcriptional and translational attenuation.

The riboflavin biosynthesis in bacteria was analyzed using comparative analysis of genes, operons and regulatory elements. A model for regulation based on formation of alternative RNA structures involving the RFN elements is suggested. In Gram-positive bacteria including actinomycetes, Thermotoga, Thermus and Deinococcus, the riboflavin metabolism and transport genes are predicted to be regulated by transcriptional attenuation, whereas in most Gram-negative bacteria, the riboflavin biosynthesis genes seem to be regulated on the level of translation initiation. Several new candidate riboflavin transporters were identified (impX in Desulfitobacterium halfniense and Fusobacterium nucleatum; pnuX in several actinomycetes, including some Corynebacterium species and Strepto myces coelicolor; rfnT in Rhizobiaceae). Traces of a number of likely horizontal transfer events were found: the complete riboflavin operon with the upstream regulatory element was transferred to Haemophilus influenzae and Actinobacillus pleuropneumoniae from some Gram-positive bacterium; non-regulated riboflavin operon in Pyrococcus furiousus was likely transferred from Thermotoga; and the RFN element was inserted into the riboflavin operon of Pseudomonas aeruginosa from some other Pseudomonas species, where it had regulated the ribH2 gene.

[1]  J. Felsenstein Evolutionary trees from DNA sequences: A maximum likelihood approach , 2005, Journal of Molecular Evolution.

[2]  E. Lesuisse,et al.  Iron uptake by the yeast Pichia guilliermondii. Flavinogenesis and reductive iron assimilation are co-regulated processes , 1999, Biometals.

[3]  R. A. Kreneva,et al.  Riboflavin operon of Bacillus subtilis: unusual symmetric arrangement of the regulatory region , 1992, Molecular and General Genetics MGG.

[4]  R. A. Kreneva,et al.  Genetic mapping of regulatory mutations ofBacillus subtilis riboflavin operon , 1990, Molecular and General Genetics MGG.

[5]  A. Bacher,et al.  Transcriptional regulation by antitermination. Interaction of RNA with NusB protein and NusB/NusE protein complex of Escherichia coli. , 2002, Journal of molecular biology.

[6]  S. Saha,et al.  RNA Expression Analysis Using an AntisenseBacillus subtilis Genome Array , 2001, Journal of bacteriology.

[7]  A A Mironov,et al.  Regulation of aromatic amino acid biosynthesis in gamma-proteobacteria. , 2001, Journal of molecular microbiology and biotechnology.

[8]  S. Weng,et al.  Riboflavin synthesis genes ribE, ribB, ribH, ribA reside in the lux operon of Photobacterium leiognathi. , 2001, Biochemical and biophysical research communications.

[9]  E. Koonin,et al.  Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. , 2001, Genome research.

[10]  W. Eisenreich,et al.  Biosynthesis of riboflavin. , 2001, Vitamins and hormones.

[11]  A. Mironov,et al.  [Study of the phenotypic occurrence of ura gene inactivation in Bacillus subtilis]. , 2000, Genetika.

[12]  W. Page,et al.  Dual regulation of catecholate siderophore biosynthesis in Azotobacter vinelandii by iron and oxidative stress. , 2000, Microbiology.

[13]  A A Mironov,et al.  [Software for analyzing bacterial genomes]. , 2000, Molekuliarnaia biologiia.

[14]  S. Bereswill,et al.  Identification of iron-regulated genes of Helicobacter pylori by a modified fur titration assay (FURTA-Hp). , 2000, FEMS microbiology letters.

[15]  D. Patel,et al.  Adaptive recognition by nucleic acid aptamers. , 2000, Science.

[16]  Mikhail S. Gelfand,et al.  Comparative Analysis of Regulatory Patterns in Bacterial Genomes , 2000, Briefings Bioinform..

[17]  Natalia Maltsev,et al.  WIT: integrated system for high-throughput genome sequence analysis and metabolic reconstruction , 2000, Nucleic Acids Res..

[18]  E. Koonin,et al.  DNA-binding proteins and evolution of transcription regulation in the archaea. , 1999, Nucleic acids research.

[19]  M. Gelfand,et al.  A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. , 1999, Trends in genetics : TIG.

[20]  A. Anderson,et al.  Transcriptional regulation by iron of genes encoding iron- and manganese-superoxide dismutases from Pseudomonas putida. , 1999, Gene.

[21]  S. Bereswill,et al.  Molecular Analysis of Riboflavin Synthesis Genes in Bartonella henselae and Use of the ribCGene for Differentiation of Bartonella Species by PCR , 1999, Journal of Clinical Microbiology.

[22]  Thomas D. Schneider,et al.  OxyR and SoxRS Regulation offur , 1999, Journal of bacteriology.

[23]  Christian N. S. Pedersen,et al.  Fast evaluation of internal loops in RNA secondary structure prediction , 1999, Bioinform..

[24]  R. Overbeek,et al.  The use of gene clusters to infer functional coupling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[25]  D. Leak,et al.  The ribR gene encodes a monofunctional riboflavin kinase which is involved in regulation of the Bacillus subtilis riboflavin operon. , 1999, Microbiology.

[26]  Katrin Beyer,et al.  Systematic genomic screening and analysis of mRNA in untranslated regions and mRNA precursors: combining experimental and computational approaches , 1998, Bioinform..

[27]  A. van Loon,et al.  Regulation of Riboflavin Biosynthesis inBacillus subtilis Is Affected by the Activity of the Flavokinase/Flavin Adenine Dinucleotide Synthetase Encoded byribC , 1998, Journal of bacteriology.

[28]  C. Vandenbroucke-Grauls,et al.  Production Is Involved in Iron Acquisition-Mediated Riboflavin Helicobacter pylori ribBA , 1998 .

[29]  J. Thompson,et al.  The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. , 1997, Nucleic acids research.

[30]  [Primary structure and functional activity of the Bacillus subtilis ribC gene]. , 1997, Molekuliarnaia biologiia.

[31]  R. A. Kreneva,et al.  [Cloning of ribR, an additional regulatory gene of the Bacillus subtilis riboflavin operon]. , 1997, Genetika.

[32]  I. Gusarov,et al.  [Riboflavin biosynthetic genes in Bacillus amyloliquefaciens: primary structure, organization and regulation of activity]. , 1997, Molekuliarnaia biologiia.

[33]  M L Howell,et al.  An operon containing fumC and sodA encoding fumarase C and manganese superoxide dismutase is controlled by the ferric uptake regulator in Pseudomonas aeruginosa: fur mutants produce elevated alginate levels , 1997, Journal of bacteriology.

[34]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[35]  J. Choih,et al.  Regulation of the ribA gene encoding GTP cyclohydrolase II by the soxRS locus in Escherichia coli. , 1996, Molecular & general genetics : MGG.

[36]  M. Mulks,et al.  Characterization of Actinobacillus pleuropneumoniae riboflavin biosynthesis genes , 1995, Journal of bacteriology.

[37]  L. Schrum,et al.  Roles of manganese and iron in the regulation of the biosynthesis of manganese-superoxide dismutase in Escherichia coli. , 1994, FEMS microbiology reviews.

[38]  R. Durbin,et al.  RNA sequence analysis using covariance models. , 1994, Nucleic acids research.

[39]  D. O'Kane,et al.  Riboflavin synthesis genes are linked with the lux operon of Photobacterium phosphoreum , 1994, Journal of bacteriology.

[40]  S. Ehrlich,et al.  The transcriptional organization of the Bacillus subtilis 168 chromosome region between the spoVAF and serA genetic loci , 1993, Molecular microbiology.

[41]  R. Szittner,et al.  The gene convergent to luxG in Vibrio fischeri codes for a protein related in sequence to RibG and deoxycytidylate deaminase. , 1993, Biochimica et biophysica acta.

[42]  J. Greenblatt,et al.  Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10 , 1993, Cell.

[43]  D. Bechhofer,et al.  Effect of ermC leader region mutations on induced mRNA stability , 1991, Journal of bacteriology.