Biocomposites Technology, Environmental Credentials and Market Forces

Biocomposites offer a significant non-food market for crop-derived fibres and resins. Considerable growth has been seen in the use of biocomposites in the automotive and decking markets over the past decade or so, but application in other sectors has hitherto been limited. Nevertheless, with suitable development, the potential exists for biocomposites to enter new markets and thus stimulate an increase in demand for non-food crops. This paper reviews some of the technological challenges being faced in bringing these materials to a wider market together with potential solutions, as well as discussing market forces influencing their commercial uptake.  2006 Society of Chemical Industry

[1]  T. W. Clyne,et al.  An Introduction to Composite Materials: Fabrication , 1996 .

[2]  M. Hautala,et al.  Use of hemp and flax in composite manufacture: a search for new production methods , 2004 .

[3]  A. Gandini,et al.  Surface chemical modification of thermoplastic starch: reactions with isocyanates, epoxy functions and stearoyl chloride , 2005 .

[4]  R. B. Turner,et al.  Characterization of polyurethane foams from soybean oil , 2002 .

[5]  C. Hill,et al.  An investigation into the effects of micro-compressive defects on interphase behaviour in hemp-epoxy composites using half-fringe photoelasticity , 2000 .

[6]  Ignace Verpoest,et al.  Influence of processing and chemical treatment of flax fibres on their composites , 2001 .

[7]  M. Misra,et al.  Biofibres, biodegradable polymers and biocomposites: An overview , 2000 .

[8]  J. C. Santos,et al.  Modificação de óleos e gorduras por biotransformação , 2004 .

[9]  A.J.D. Lambert,et al.  Optimal Recycling System Design: With an Application to Sophisticated Packaging Tools , 2004 .

[10]  M. Misra,et al.  Sustainable Bio-Composites from Renewable Resources: Opportunities and Challenges in the Green Materials World , 2002, Renewable Energy.

[11]  D. Bhattacharyya,et al.  Manufacturing and Evaluation of Woodfibre-Waste Plastic Composite Sheets , 2003 .

[12]  Biqiong Chen,et al.  Thermoplastic starch-clay nanocomposites and their characteristics , 2005 .

[13]  R. E. Mark Cell Wall Mechanics of Tracheids , 1967 .

[14]  R. Narayan,et al.  Biodegradable soy protein–polyester blends by reactive extrusion process , 2004 .

[15]  René Lessire GENOMIQUE ET PRODUCTION NON ALIMENTAIRE Acides gras d'intérêt industriel obtenus par génie génétique , 2002 .

[16]  A stress analysis model for composite coaxial cylinders , 1997 .

[17]  Y. Popineau,et al.  Properties and microstructure of thermo-pressed wheat gluten films: a comparison with cast films. , 2004, Biomacromolecules.

[18]  Richard P. Wool,et al.  Property analysis of triglyceride-based thermosets , 2005 .

[19]  Ulrich Riedel,et al.  Natural fibre‐reinforced biopolymers as construction materials – new discoveries , 1999 .

[20]  A. J. Norton,et al.  Structural biocomposites from flax-Part I: Effect of bio-technical fibre modification on composite properties , 2006 .

[21]  Munir Cheryan,et al.  Zein: the industrial protein from corn , 2001 .

[22]  S. Hudson,et al.  Crystal Morphology, Biosynthesis, and Physical Assembly of Cellulose, Chitin, and Chitosan , 1997 .

[23]  H. E. Desch,et al.  Timber: Structure, Properties, Conversion and Use , 1996 .

[24]  D. J. White,et al.  The anatomy of wood, its diversity and variability , 1986 .

[25]  J Azcárate,et al.  European policy on biodegradable waste: a management perspective. , 2002, Water science and technology : a journal of the International Association on Water Pollution Research.

[26]  Simon Amesoder,et al.  Plasma makes for a strong bond , 2003 .

[27]  Jochem Gassan Natural fibres in automotive interiors , 2003 .

[28]  S. De,et al.  Self-crosslinking rubber/rubber and rubber/thermoplastic blends: A review , 2001 .

[29]  R. Wool,et al.  Polymerization of maleic anhydride–modified plant oils with polyols , 2003 .

[30]  Hiroyuki Yano,et al.  The effect of morphological changes from pulp fiber towards nano-scale fibrillated cellulose on the mechanical properties of high-strength plant fiber based composites , 2004 .

[31]  L. Matuana,et al.  Effect of processing method on surface and weathering characteristics of wood–flour/HDPE composites , 2004 .

[32]  J. Kenny,et al.  Effect of Chemical Treatment on the Mechanical Properties of Starch-Based Blends Reinforced with Sisal Fibre , 2004 .

[33]  S. Tsai,et al.  Introduction to composite materials , 1980 .

[34]  Robert Stone,et al.  Structural properties of recycled plastic/sawdust lumber decking planks , 2001 .

[35]  Lin Li,et al.  Environmentally responsible public procurement (ERPP) and its implications for integrated product policy (IPP) , 2005 .

[36]  J. Scala,et al.  Rheology of chemically modified triglycerides , 2005 .

[37]  A. J. Bolton,et al.  Natural Fibers for Plastic Reinforcement , 1994 .

[38]  M. Hedenqvist,et al.  Transport and tensile properties of compression-molded wheat gluten films. , 2004, Biomacromolecules.

[39]  M. Shibata,et al.  Trehalose‐based thermosetting resins. I. Synthesis and thermal properties of trehalose vinylbenzyl ether , 2004 .

[40]  Koichi Kimura,et al.  Bio-based polymers , 2005 .

[41]  F. Simon,et al.  A study of the effect of acetylation and propionylation surface treatments on natural fibres , 2005 .

[42]  Jerry E. White,et al.  Development and evaluation of terminally epoxidized triglycerides for coatings applications , 2004 .

[43]  Bettina Mihalyi,et al.  Recycling of Fibre Materials , 2005 .

[44]  J. E. Gordon,et al.  A mechanism for the control of crack propagation in all-brittle systems , 1964, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[45]  David A. Glassner,et al.  Applications of life cycle assessment to NatureWorks polylactide (PLA) production , 2003 .

[46]  H. Bos,et al.  The applicability of natural fibres as reinforcement for polymer composites , 1997 .

[47]  Hayley Hesseln,et al.  Consumer Willingness to Pay for a Naturally Decay-Resistant Wood Product , 2004 .

[48]  Anil N. Netravali,et al.  ‘Green’ composites using cross-linked soy flour and flax yarns , 2005 .

[49]  Holger Hanselka,et al.  Faserverbundwerkstoffe aus nachwachsenden Rohstoffen für den ökologischen Leichtbau , 1998 .

[50]  P. Mcmullen,et al.  Fibre/resin composites for aircraft primary structures: a short history, 1936–1984 , 1984 .

[51]  A. S. Herrmann,et al.  Construction materials based upon biologically renewable resources—from components to finished parts , 1998 .

[52]  K. Vorlop,et al.  Biotechnological production of itaconic acid , 2001, Applied Microbiology and Biotechnology.

[53]  J. W. Farrent,et al.  High-performance composites from low-cost plant primary cell walls , 2005 .

[54]  A. McDonald,et al.  The effect of silane coupling agents on radiata pine fibre for use in thermoplastic matrix composites , 2003 .

[55]  F. L. Matthews,et al.  Composite Materials : Engineering and Science , 1993 .

[56]  G. Basavarajappa,et al.  Evaluation of Jute as a Reinforcement in Composites , 1982 .

[57]  R. Wool,et al.  Mechanical properties of glass/flax hybrid composites based on a novel modified soybean oil matrix material , 2005 .

[58]  P. Dole,et al.  Mechanical properties of starch‐based materials. I. Short review and complementary experimental analysis , 2005 .

[59]  Qin Wang,et al.  Properties of zein films coated with drying oils. , 2005, Journal of Agricultural and Food Chemistry.

[60]  D. Fengel,et al.  Wood: Chemistry, Ultrastructure, Reactions , 1983 .

[61]  Sabu Thomas,et al.  A study of advances in characterization of interfaces and fiber surfaces in lignocellulosic fiber-reinforced composites , 2005 .

[62]  Manjusri Misra,et al.  Effect of process engineering on the performance of natural fiber reinforced cellulose acetate biocomposites , 2004 .

[63]  Andrzej K. Bledzki,et al.  Properties and modification methods for vegetable fibers for natural fiber composites , 1996 .