A Survey of Recent Advances in Hierarchical Clustering Algorithms

It has often been asserted that since hierarchical clustering algorithms require pairwise interobject proximities, the complexity of these clustering procedures is at least O(N 2 ). Recent work has disproved this by incorporating efficient nearest neighbour searching algorithms into the clustering algorithms. A general framework for hierarchical, agglomerative clustering algorithms is discussed here, which opens up the prospect of much improvement on current, widely-used algorithms. This 'progress report' details new algorithmic approaches in this area, and reviews recent results.

[1]  J. Juan Le programme HIVOR de classification ascendante hiérarchique selon les voisins réciproques et le critère de la variance , 1982 .

[2]  Robert E. Tarjan,et al.  Finding Minimum Spanning Trees , 1976, SIAM J. Comput..

[3]  Fionn Murtagh Expected-Time Complexity Results for Hierarchic Clustering Algorithms Which Use Cluster Centres , 1983, Inf. Process. Lett..

[4]  C. de Rham,et al.  La classification hiérarchique ascendante selon la méthode des voisins réciproques , 1980 .

[5]  Keinosuke Fukunaga,et al.  A Branch and Bound Algorithm for Computing k-Nearest Neighbors , 1975, IEEE Transactions on Computers.

[6]  Forest Baskett,et al.  An Algorithm for Finding Nearest Neighbors , 1975, IEEE Transactions on Computers.

[7]  Vladimir Batagelj,et al.  Note on ultrametric hierarchical clustering algorithms , 1981 .

[8]  Robin Sibson,et al.  SLINK: An Optimally Efficient Algorithm for the Single-Link Cluster Method , 1973, Comput. J..

[9]  G. N. Lance,et al.  A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems , 1967, Comput. J..

[10]  Andrew Chi-Chih Yao,et al.  An O(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees , 1975, Inf. Process. Lett..

[11]  F. James Rohlf,et al.  A Probabilistic Minimum Spanning Tree Algorithm , 1978, Inf. Process. Lett..

[12]  Jon Louis Bentley,et al.  Fast Algorithms for Constructing Minimal Spanning Trees in Coordinate Spaces , 1978, IEEE Transactions on Computers.

[13]  Josef Kittler A METHOD FOR DETERMINING k‐NEAREST NEIGHBOURS , 1978 .

[14]  G. Milligan Ultrametric hierarchical clustering algorithms , 1979 .

[15]  Bruce W. Weide,et al.  Optimal Expected-Time Algorithms for Closest Point Problems , 1980, TOMS.

[16]  C. J. van Rijsbergen,et al.  The use of hierarchic clustering in information retrieval , 1971, Inf. Storage Retr..

[17]  Richard C. T. Lee Clustering Analysis and Its Applications , 1981 .

[18]  M. Bruynooghe,et al.  Classification ascendante hiérarchique des grands ensembles de données : un algorithme rapide fondé sur la construction des voisinages réductibles , 1978 .

[19]  Jon Louis Bentley,et al.  An Algorithm for Finding Best Matches in Logarithmic Expected Time , 1977, TOMS.

[20]  Louis L. McQuitty,et al.  A Mutual Development of Some Typological Theories and Pattern-Analytic Methods , 1967 .

[21]  D. Defays,et al.  An Efficient Algorithm for a Complete Link Method , 1977, Comput. J..

[22]  Anil K. Jain,et al.  Clustering Methodologies in Exploratory Data Analysis , 1980, Adv. Comput..