CRANE STABILITY ASSESSMENT METHOD IN THE OPERATING CYCLE

The article presents stability assessment of the mobile crane handling system based on the developed method with the use of the mathematical model built and the model built in the integrated CAD/CAE environment. The model proposed consists of the main crane assemblies coupled together: the truck with outrigger system and the base, the slewing column, the inner and outer arms, the six-member telescopic boom, the hook with lifting sling and the transported load. Analyses were conducted of the displacements of the mass centre of the crane system, reactions of the outrigger system, stabilizing and overturning torques that act on the crane as well as the safety indicator values for the given movement trajectories of the crane working elements.

[1]  Walter Lacarbonara,et al.  Payload oscillations control in harbor cranes via semi-active vibration absorbers: modeling, simulations and experimental results , 2017 .

[2]  William Singhose,et al.  Tip-Over Stability Analysis of Mobile Boom Cranes With Swinging Payloads , 2013 .

[3]  Andrew Hale,et al.  Towards risk assessment for crane activities , 2008 .

[4]  Dawid Cekus,et al.  THE DYNAMICS OF THE FOREST CRANE DURING THE LOAD CARRYING , 2013 .

[5]  Wojciech Kacalak,et al.  Model symulacyjny żurawia samojezdnego z zapewnieniem jego stateczności , 2016 .

[6]  Mohamed Al-Hussein,et al.  From AutoCAD to 3ds Max: An automated approach for animating heavy lifting studies , 2015 .

[7]  Wojciech Kacalak,et al.  Conceptual Design of Innovative Speech Interfaces with Augmented Reality and Interactive Systems for Controlling Loader Cranes , 2016, CSOC.

[8]  A. Urbaś Analysis of flexibility of the support and its influence on dynamics of the grab crane , 2013 .

[10]  Seong Wook Lee,et al.  An experimental analysis of the effect of wind load on the stability of a container crane , 2007 .

[11]  W. Sochacki,et al.  The dynamic stability of a laboratory model of a truck crane , 2007 .

[12]  Matthew P. Cartmell,et al.  Three-dimensional modeling of container cranes , 2013 .

[13]  D. Cekus Modelowanie i badania symulacyjne ruchu żurawia laboratoryjnego , 2012 .

[14]  Matthew P. Cartmell,et al.  Dynamics of container cranes: three-dimensional modeling, full-scale experiments, and identification , 2015 .

[15]  Wojciech Kacalak,et al.  Innovative Intelligent Interaction Systems of Loader Cranes and Their Human Operators , 2017, CSOC.

[16]  P. Herbin,et al.  Modelowanie kinematyki prostej i odwrotnej żurawia samochodowego o strukturze redundantnej z wykorzystaniem środowiska Matlab , 2016 .

[17]  Arkadiusz Trąbka,et al.  The Influence of Clearances in a Drive System on Dynamics and Kinematics of a Telescopic Crane , 2015 .

[18]  Maciej Majewski,et al.  Computer Aided Analysis of the Mobile Crane Handling System Using Computational Intelligence Methods , 2017 .

[19]  Sang Joon Lee,et al.  Wind load on a container crane located in atmospheric boundary layers , 2008 .

[20]  J. Kłosiński,et al.  Wpływ wybranych strategii sterowania ruchami roboczymi żurawia samojezdnego na jego stateczność , 2010 .

[21]  Wojciech Kacalak,et al.  Smart Control of Lifting Devices Using Patterns and Antipatterns , 2017, CSOC.

[22]  Wojciech Kacalak,et al.  Intelligent Speech-Based Interactive Communication Between Mobile Cranes and Their Human Operators , 2016, ICANN.

[23]  A. Maczyński,et al.  Sprawdzanie stateczności żurawia w trakcie realizacji ruchów roboczych , 2002 .

[24]  M. Pajor,et al.  Interactive Control Systems for Mobile Cranes , 2017 .

[25]  Wojciech Kacalak,et al.  Human-Machine Speech-Based Interfaces with Augmented Reality and Interactive Systems for Controlling Mobile Cranes , 2016, ICR.

[26]  Wojciech Kacalak,et al.  Intelligent Speech Interaction of Devices and Human Operators , 2016, CSOC.

[27]  B. Posiadała,et al.  Modelowanie i badania symulacyjne ruchu żurawia leśnego w cyklu roboczym , 2011 .