Online decision making and automatic decision model adaptation

The paper investigates an online version of the vehicle routing problem with time windows, in which additionally arriving requests cause the revision of so far followed routes and schedules. An extended online optimization framework is proposed, which automatically adapts to problem variations and enables the explicit consideration of up-to-date knowledge about the current performance of the controlled system. Actually, we use the mean punctuality observed in the transportation system to adjust the objective function utilized for solving the next decision problem instance. The search is guided toward least cost solutions coming along with high punctuality. We prove the applicability of this approach within comprehensive numerical experiments.

[1]  Sven O. Krumke,et al.  Online Optimization: Competitive Analysis and Beyond , 2002 .

[2]  Sandy Irani,et al.  On-Line Algorithms for the Dynamic Traveling Repair Problem , 2002, SODA '02.

[3]  Hans-Jürgen Appelrath,et al.  Scheduling the supply chain by teams of agents , 2003, 36th Annual Hawaii International Conference on System Sciences, 2003. Proceedings of the.

[4]  Vangelis Th. Paschos,et al.  Algorithms for the On-Line Quota Traveling Salesman Problem , 2004, Inf. Process. Lett..

[5]  Jörn Schönberger,et al.  On the Value of Objective Function Adaptation in Online Optimisation , 2007, OR.

[6]  Jörn Schönberger Operational Freight Carrier Planning: Basic Concepts, Optimization Models and Advanced Memetic Algorithms , 2005 .

[7]  Stefan Voß,et al.  Dispatching of an Electric Monorail System: Applying Metaheuristics to an Online Pickup and Delivery Problem , 2004, Transp. Sci..

[8]  Moshe Dror,et al.  Vehicle Routing with Stochastic Demands: Properties and Solution Frameworks , 1989, Transp. Sci..

[9]  Houmin Yan,et al.  Optimal returns policy for supply chain with e-marketplace , 2004 .

[10]  Hartmut Stadtler,et al.  Supply Chain Management and Advanced Planning , 2000 .

[11]  Sinisa Segvic,et al.  Enhancing the Point Feature Tracker by Adaptive Modelling of the Feature Support , 2006, ECCV.

[12]  Leen Stougie,et al.  Algorithms for the On-Line Travelling Salesman1 , 2001, Algorithmica.

[13]  Matthew Arnold,et al.  A Survey of Adaptive Optimization in Virtual Machines , 2005, Proceedings of the IEEE.

[14]  Marius M. Solomon,et al.  Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints , 1987, Oper. Res..

[15]  Stefan Voß,et al.  Effiziente Prozesse im Kombinierten Verkehr – Ein neuer Lösungsansatz zur Disposition von Portalkränen , 2003 .

[16]  L. Krajewski,et al.  Operations Management , 1994 .

[17]  Gerhard J. Woeginger,et al.  Online Algorithms , 1998, Lecture Notes in Computer Science.

[18]  Christian Bierwirth Adaptive Search and the Management of Logistics Systems: Base Models for Learning Agents , 2000 .

[19]  Kai Gutenschwager Online-Dispositionsprobleme in der Lagerlogistik , 2002 .

[20]  Stefan Nickel,et al.  Operations Research, Proceedings 2007, Selected Papers of the Annual International Conference of the German Operations Research Society (GOR), Saarbrücken, Germany, September 5-7, 2007 , 2008, OR.

[21]  B. Brehmer Dynamic decision making: human control of complex systems. , 1992, Acta psychologica.

[22]  Sven Oliver Krumke,et al.  Real-Time Dispatching of Guided and Unguided Automobile Service Units with Soft Time Windows , 2002, ESA.

[23]  Dirk C. Mattfeld,et al.  Management logistischer Netzwerke , 2007 .

[24]  Sven Oliver Krumke,et al.  Reoptimization gaps versus model errors in online-dispatching of service units for ADAC , 2006, Discret. Appl. Math..

[25]  Jörn Schönberger,et al.  On Decision Model Adaptation in Online Optimization of a Transport System , 2007 .