Parameterization of NDDO wavefunctions using genetic algorithms. An evolutionary approach to parameterizing potential energy surfaces and direct dynamics calculations for organic reactions

[1]  J. C. Slater,et al.  Simplified LCAO Method for the Periodic Potential Problem , 1954 .

[2]  R. K. Nesbet,et al.  Self‐Consistent Orbitals for Radicals , 1954 .

[3]  J. Pople,et al.  Approximate Self-Consistent Molecular Orbital Theory. I. Invariant Procedures , 1965 .

[4]  D. Truhlar,et al.  Potential energy surfaces for atom transfer reactions involving hydrogens and halogens , 1971 .

[5]  M. Karplus,et al.  Dyanmics of organic reactions , 1973 .

[6]  M. Karplus,et al.  Semiclassical trajectory approach to photoisomerization , 1975 .

[7]  K. Freed,et al.  Erratum: Nonclassical terms in the true effective valence shell Hamiltonian: A second quantized formalism , 1976 .

[8]  M. Dewar,et al.  Ground States of Molecules. 38. The MNDO Method. Approximations and Parameters , 1977 .

[9]  Walter Thiel,et al.  Ground States of Molecules. 39. MNDO Results for Molecules Containing Hydrogen, Carbon, Nitrogen, and Oxygen , 1977 .

[10]  D. Truhlar Potential Energy Surfaces and Dynamics Calculations , 1981 .

[11]  B. C. Garrett,et al.  The quenching of Na(3 2P) by H2: Interactions and dynamics , 1982 .

[12]  Eamonn F. Healy,et al.  Development and use of quantum mechanical molecular models. 76. AM1: a new general purpose quantum mechanical molecular model , 1985 .

[13]  Reaction path curvature effects in the isomerization of the methoxy radical , 1985 .

[14]  Akitomo Tachibana,et al.  Stability of the reaction coordinate in the unimolecular reaction of thioformaldehyde , 1985 .

[15]  B. C. Garrett,et al.  Dynamical bottlenecks and semiclassical tunneling paths for chemical reactions , 1987 .

[16]  Mark S. Gordon,et al.  Potential energy surfaces for polyatomic reaction dynamics , 1987 .

[17]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[18]  J. McIver,et al.  Singlet biradicals as intermediates. Canonical variational transition-state theory results for trimethylene , 1988 .

[19]  Michael J. S. Dewar,et al.  Extension of AM1 to the halogens , 1988 .

[20]  M. Gordon,et al.  Ab initio reaction paths and direct dynamics calculations , 1989 .

[21]  J. Stewart Optimization of parameters for semiempirical methods II. Applications , 1989 .

[22]  J. Stewart Optimization of parameters for semiempirical methods I. Method , 1989 .

[23]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[24]  James J. P. Stewart,et al.  MOPAC: A semiempirical molecular orbital program , 1990, J. Comput. Aided Mol. Des..

[25]  D. Truhlar,et al.  Reaction path power series analysis of NH3 inversion , 1990 .

[26]  D. Truhlar,et al.  Direct dynamics calculations with NDDO (neglect of diatomic differential overlap) molecular orbital theory with specific reaction parameters , 1991 .

[27]  Donald G. Truhlar,et al.  Optimized calculations of reaction paths and reaction‐path functions for chemical reactions , 1992 .

[28]  Àngels González-Lafont,et al.  Direct dynamics calculation of the kinetic isotope effect for an organic hydrogen-transfer reaction, including corner-cutting tunneling in 21 dimensions , 1993 .

[29]  E. Carter,et al.  Time-Reversible Multiple Time Scale ab Initio Molecular Dynamics , 1993 .

[30]  Donald G. Truhlar,et al.  Molecular modeling of the kinetic isotope effect for the [1,5]-sigmatropic rearrangement of cis-1,3-pentadiene , 1993 .

[31]  H. Schlegel,et al.  Ab initio classical trajectory study of H2CO+H2 + CO dissociation , 1994 .