Stable IMEX schemes for a Nitsche-based approximation of elastodynamic contact problems. Selective mass scaling interpretation

We introduce some IMEX schemes (implicit-explicit schemes with an implicit term being linear) for approximating elastodynamic contact problems when the contact condition is taken into account with a Nitsche method. We develop a theoretical and numerical study of the properties of the schemes, especially in terms of stability, provide some numerical comparisons with standard explicit and implicit scheme and propose some improvements to obtain a more reliable approximation of motion for large time steps. We also show how selective mass scaling techniques can be interpreted as IMEX schemes.

[1]  Barbara Wohlmuth,et al.  Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.

[2]  D. Flanagan,et al.  PRONTO 3D: A three-dimensional transient solid dynamics program , 1989 .

[3]  Alexandre Ern,et al.  Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..

[4]  P. Tallec,et al.  Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .

[5]  Giuseppe Cocchetti,et al.  Selective mass scaling and critical time-step estimate for explicit dynamics analyses with solid-shell elements , 2013 .

[6]  F. Armero,et al.  Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .

[7]  M. Raous,et al.  Friction and instability of steady sliding: squeal of a rubber/glass contact , 1999 .

[8]  J. U. Kim,et al.  A boundary thin obstacle problem for a wave equation , 1989 .

[9]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[10]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems II: The Multidimensional Case , 2002, SIAM J. Numer. Anal..

[11]  John E. Dolbow,et al.  A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: Intersecting interfaces , 2013 .

[12]  Franz Chouly,et al.  A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..

[13]  Vincent Acary,et al.  Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: Definition and outlook , 2014, Math. Comput. Simul..

[14]  Jérôme Pousin,et al.  Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary , 2014 .

[15]  Erik Burman,et al.  A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity , 2014, 1407.2229.

[16]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[17]  M. Schatzman,et al.  Un problème hyperbolique du 2ème ordre avec contrainte unilatérale: La corde vibrante avec obstacle ponctuel , 1980 .

[18]  Jérôme Pousin,et al.  An overview of recent results on Nitsche's method for contact problems , 2016 .

[19]  Franz Chouly,et al.  Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems , 2018, Adv. Model. Simul. Eng. Sci..

[20]  Eitan Grinspun,et al.  Implicit-Explicit Variational Integration of Highly Oscillatory Problems , 2008, Multiscale Model. Simul..

[21]  G. Burton Sobolev Spaces , 2013 .

[22]  J. Oden,et al.  Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .

[23]  Anton Tkachuk,et al.  Local and global strategies for optimal selective mass scaling , 2014 .

[24]  Barbara Wohlmuth,et al.  A stable energy‐conserving approach for frictional contact problems based on quadrature formulas , 2008 .

[25]  Wolfgang A. Wall,et al.  Nitsche’s method for finite deformation thermomechanical contact problems , 2018, Computational Mechanics.

[26]  Houari Boumediène Khenous Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. , 2005 .

[27]  J. Moreau,et al.  Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .

[28]  Mattias Unosson,et al.  Selective mass scaling for thin walled structures modeled with tri-linear solid elements , 2004 .

[29]  Konstantinos Poulios,et al.  GetFEM , 2020, ACM Trans. Math. Softw..

[30]  Franz Chouly,et al.  Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..

[31]  Michelle Schatzman,et al.  A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .

[32]  Mark O. Neal,et al.  Contact‐impact by the pinball algorithm with penalty and Lagrangian methods , 1991 .

[33]  Laetitia Paoli,et al.  A numerical scheme for impact problems , 1999 .

[34]  Franz Chouly,et al.  A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes , 2014 .

[35]  Patrick Laborde,et al.  Mass redistribution method for finite element contact problems in elastodynamics , 2008 .

[36]  Mattias Unosson,et al.  Selective mass scaling for explicit finite element analyses , 2005 .

[37]  M. Schatzman A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle , 1980 .

[38]  Christof Eck,et al.  Unilateral Contact Problems: Variational Methods and Existence Theorems , 2005 .

[39]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[40]  T. Laursen,et al.  Contact—impact modeling in explicit transient dynamics , 2000 .

[41]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[42]  David E. Stewart,et al.  Existence of Solutions for a Class of Impact Problems Without Viscosity , 2006, SIAM J. Math. Anal..

[43]  Benjamin Seibold,et al.  Unconditional Stability for Multistep ImEx Schemes: Theory , 2016, SIAM J. Numer. Anal..

[44]  Karl Glasner,et al.  Improving the accuracy of convexity splitting methods for gradient flow equations , 2016, J. Comput. Phys..

[45]  J. J.,et al.  Numerical aspects of the sweeping process , 1999 .

[46]  Michel Salaün,et al.  Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations , 2013 .

[47]  Laetitia Paoli,et al.  A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..

[48]  P. Alart,et al.  A generalized Newton method for contact problems with friction , 1988 .

[49]  Franz Chouly,et al.  A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes , 2014 .

[50]  Alexander Seitz Computational Methods for Thermo-Elasto-Plastic Contact , 2019 .