Stable IMEX schemes for a Nitsche-based approximation of elastodynamic contact problems. Selective mass scaling interpretation
暂无分享,去创建一个
[1] Barbara Wohlmuth,et al. Variationally consistent discretization schemes and numerical algorithms for contact problems* , 2011, Acta Numerica.
[2] D. Flanagan,et al. PRONTO 3D: A three-dimensional transient solid dynamics program , 1989 .
[3] Alexandre Ern,et al. Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..
[4] P. Tallec,et al. Energy-controlling time integration methods for nonlinear elastodynamics and low-velocity impact , 2006 .
[5] Giuseppe Cocchetti,et al. Selective mass scaling and critical time-step estimate for explicit dynamics analyses with solid-shell elements , 2013 .
[6] F. Armero,et al. Formulation and analysis of conserving algorithms for frictionless dynamic contact/impact problems , 1998 .
[7] M. Raous,et al. Friction and instability of steady sliding: squeal of a rubber/glass contact , 1999 .
[8] J. U. Kim,et al. A boundary thin obstacle problem for a wave equation , 1989 .
[9] T. Laursen,et al. DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .
[10] Laetitia Paoli,et al. A Numerical Scheme for Impact Problems II: The Multidimensional Case , 2002, SIAM J. Numer. Anal..
[11] John E. Dolbow,et al. A Nitsche stabilized finite element method for frictional sliding on embedded interfaces. Part II: Intersecting interfaces , 2013 .
[12] Franz Chouly,et al. A Nitsche-Based Method for Unilateral Contact Problems: Numerical Analysis , 2013, SIAM J. Numer. Anal..
[13] Vincent Acary,et al. Timestepping schemes for nonsmooth dynamics based on discontinuous Galerkin methods: Definition and outlook , 2014, Math. Comput. Simul..
[14] Jérôme Pousin,et al. Convergence of mass redistribution method for the one-dimensional wave equation with a unilateral constraint at the boundary , 2014 .
[15] Erik Burman,et al. A penalty-free Nitsche method for the weak imposition of boundary conditions in compressible and incompressible elasticity , 2014, 1407.2229.
[16] Nathan M. Newmark,et al. A Method of Computation for Structural Dynamics , 1959 .
[17] M. Schatzman,et al. Un problème hyperbolique du 2ème ordre avec contrainte unilatérale: La corde vibrante avec obstacle ponctuel , 1980 .
[18] Jérôme Pousin,et al. An overview of recent results on Nitsche's method for contact problems , 2016 .
[19] Franz Chouly,et al. Explicit Verlet time-integration for a Nitsche-based approximation of elastodynamic contact problems , 2018, Adv. Model. Simul. Eng. Sci..
[20] Eitan Grinspun,et al. Implicit-Explicit Variational Integration of Highly Oscillatory Problems , 2008, Multiscale Model. Simul..
[21] G. Burton. Sobolev Spaces , 2013 .
[22] J. Oden,et al. Contact Problems in Elasticity: A Study of Variational Inequalities and Finite Element Methods , 1987 .
[23] Anton Tkachuk,et al. Local and global strategies for optimal selective mass scaling , 2014 .
[24] Barbara Wohlmuth,et al. A stable energy‐conserving approach for frictional contact problems based on quadrature formulas , 2008 .
[25] Wolfgang A. Wall,et al. Nitsche’s method for finite deformation thermomechanical contact problems , 2018, Computational Mechanics.
[26] Houari Boumediène Khenous. Problèmes de contact unilatéral avec frottement de Coulomb en élastostatique et élastodynamique. Etude mathématique et résolution numérique. , 2005 .
[27] J. Moreau,et al. Unilateral Contact and Dry Friction in Finite Freedom Dynamics , 1988 .
[28] Mattias Unosson,et al. Selective mass scaling for thin walled structures modeled with tri-linear solid elements , 2004 .
[29] Konstantinos Poulios,et al. GetFEM , 2020, ACM Trans. Math. Softw..
[30] Franz Chouly,et al. Symmetric and non-symmetric variants of Nitsche's method for contact problems in elasticity: theory and numerical experiments , 2014, Math. Comput..
[31] Michelle Schatzman,et al. A wave problem in a half-space with a unilateral constraint at the boundary , 1984 .
[32] Mark O. Neal,et al. Contact‐impact by the pinball algorithm with penalty and Lagrangian methods , 1991 .
[33] Laetitia Paoli,et al. A numerical scheme for impact problems , 1999 .
[34] Franz Chouly,et al. A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes , 2014 .
[35] Patrick Laborde,et al. Mass redistribution method for finite element contact problems in elastodynamics , 2008 .
[36] Mattias Unosson,et al. Selective mass scaling for explicit finite element analyses , 2005 .
[37] M. Schatzman. A hyperbolic problem of second order with unilateral constraints: The vibrating string with a concave obstacle , 1980 .
[38] Christof Eck,et al. Unilateral Contact Problems: Variational Methods and Existence Theorems , 2005 .
[39] D. J. Eyre. Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .
[40] T. Laursen,et al. Contact—impact modeling in explicit transient dynamics , 2000 .
[41] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[42] David E. Stewart,et al. Existence of Solutions for a Class of Impact Problems Without Viscosity , 2006, SIAM J. Math. Anal..
[43] Benjamin Seibold,et al. Unconditional Stability for Multistep ImEx Schemes: Theory , 2016, SIAM J. Numer. Anal..
[44] Karl Glasner,et al. Improving the accuracy of convexity splitting methods for gradient flow equations , 2016, J. Comput. Phys..
[45] J. J.,et al. Numerical aspects of the sweeping process , 1999 .
[46] Michel Salaün,et al. Vibro-impact of a plate on rigid obstacles: existence theorem, convergence of a scheme and numerical simulations , 2013 .
[47] Laetitia Paoli,et al. A Numerical Scheme for Impact Problems I: The One-Dimensional Case , 2002, SIAM J. Numer. Anal..
[48] P. Alart,et al. A generalized Newton method for contact problems with friction , 1988 .
[49] Franz Chouly,et al. A Nitsche finite element method for dynamic contact : 1. Semi-discrete problem analysis and time-marching schemes , 2014 .
[50] Alexander Seitz. Computational Methods for Thermo-Elasto-Plastic Contact , 2019 .