Benchmark Suggestions for Resonant Double Higgs Production at the LHC for Extended Higgs Sectors

In this note we present benchmark scenarios for resonant double Higgs production at the $13\,$TeV LHC in the 2HDM+S model and the $Z_3$ Next-to-Minimal Supersymmetric Standard Model (NMSSM), which may be accessible with 300 fb$^{-1}$ of data. The NMSSM Higgs sector can be mapped onto the 2HDM+S. We show benchmark points and relevant parameter planes in the 2HDM+S for three sets of signatures: ($A\to h_{125} a, ~H\to h_{125} h)$, ($A\to a h, H\to hh, H\to aa)$, and ($H\to h_{125}h_{125}$). The first two signatures are optimized in what we call $Z$-Phobic scenarios where $H/A$ decays into final states with $Z$ bosons are suppressed. The last signature, $h_{125}$ pair production, is directly proportional to the misalignment of $h_{125}$ with the interaction state sharing the couplings of a SM Higgs boson, and hence is presented in the Max Misalignment scenario. We also present two NMSSM benchmark points for the ($A\to h_{125} a, ~H\to h_{125} h)$ signatures. The benchmark scenarios presented here are based on Refs. [1,2].

[1]  Christoph Englert,et al.  Showcasing HH production: Benchmarks for the LHC and HL-LHC , 2018, Physical Review D.

[2]  R. Bonciani,et al.  Two-loop light fermion contribution to Higgs production and decays , 2004, hep-ph/0404071.

[3]  Robert V. Harlander,et al.  SusHi Bento: Beyond NNLO and the heavy- top limit , 2016, Comput. Phys. Commun..

[4]  Roberto Barcelo,et al.  Extra Higgs bosons in tt production at the LHC , 2010, 1001.5456.

[5]  V. M. Ghete,et al.  Measurements of properties of the Higgs boson decaying into the four-lepton final state in pp collisions at s=13$$ \sqrt{s}=13 $$ TeV , 2017, 1706.09936.

[6]  John F. Donoghue,et al.  Properties of charged Higgs bosons , 1979 .

[7]  S. Di Vita,et al.  On the NLO QCD corrections to the production of the heaviest neutral Higgs scalar in the MSSM , 2012, 1204.1016.

[8]  Howard Georgi,et al.  Suppression of Flavor Changing Effects From Neutral Spinless Meson Exchange in Gauge Theories , 1979 .

[9]  Cyril Hugonie,et al.  NMHDECAY 2.1: An updated program for sparticle masses, Higgs masses, couplings and decay widths in the NMSSM , 2006, Comput. Phys. Commun..

[10]  Silva,et al.  Fundamental CP-violating quantities in an SU(2) , 1994, Physical review. D, Particles and fields.

[11]  M. Carena,et al.  Higgs portals for thermal Dark Matter. EFT perspectives and the NMSSM , 2017, Journal of High Energy Physics.

[12]  Silva,et al.  Jarlskog-like invariants for theories with scalars and fermions. , 1995, Physical review. D, Particles and fields.

[13]  S. Di Vita,et al.  NLO QCD corrections to pseudoscalar Higgs production in the MSSM , 2011, 1107.0914.

[14]  Scott Thomas,et al.  The hunt for the rest of the Higgs bosons , 2015, Journal of High Energy Physics.

[15]  K. Freese,et al.  NMSSM Higgs boson search strategies at the LHC and the mono-Higgs signature in particular , 2017, 1703.07800.

[16]  Zhen Liu,et al.  Challenges and opportunities for heavy scalar searches in the tt¯$$ t\overline{t} $$ channel at the LHC , 2016, 1608.07282.

[17]  U. Ellwanger,et al.  Simultaneous search for extra light and heavy Higgs bosons via cascade decays , 2017, Journal of High Energy Physics.

[18]  V. M. Ghete,et al.  Measurements of properties of the Higgs boson decaying to a W boson pair in pp collisions at $\sqrt{s} = $ 13 TeV , 2018 .

[19]  A. Randle-conde,et al.  Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV , 2016 .

[20]  M. P. Casado,et al.  Search for heavy resonances decaying into WW in the $$e\nu \mu \nu $$eνμν final state in pp collisions at $$\sqrt{s}=13$$s=13$$\,\text {TeV}$$TeV with the ATLAS detector , 2018, The European physical journal. C, Particles and fields.

[21]  M. Steinhauser,et al.  RunDec: a Mathematica package for running and decoupling of the strong coupling and quark masses , 2000 .

[22]  Margarete Mühlleitner,et al.  SDECAY: a Fortran code for the decays of the supersymmetric particles in the MSSM , 2005, Comput. Phys. Commun..

[23]  Alessandro Vicini,et al.  On the generalized harmonic polylogarithms of one complex variable , 2010, Comput. Phys. Commun..

[24]  Sunghoon Jung,et al.  Dip or nothingness of a Higgs resonance from the interference with a complex phase , 2015, 1505.00291.

[25]  Cyril Hugonie,et al.  NMHDECAY: A fortran code for the Higgs masses, couplings and decay widths in the NMSSM , 2005 .

[26]  S. Liebler Neutral Higgs production at proton colliders in the CP-conserving NMSSM , 2015, 1502.07972.

[27]  R. Harlander,et al.  Next-to-next-to-leading order Higgs production at Hadron Colliders. , 2002, Physical review letters.

[28]  Andrei,et al.  Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at √s = 7 and 8 TeV , 2016, 1606.02266.

[29]  V. M. Ghete,et al.  Combined measurements of Higgs boson couplings in proton–proton collisions at \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{doc , 2018, The European Physical Journal. C, Particles and Fields.

[30]  Ulrich Ellwanger,et al.  NMSDECAY: A Fortran code for supersymmetric particle decays in the Next-to-Minimal Supersymmetric Standard Model , 2011, Comput. Phys. Commun..

[31]  C. Collaboration,et al.  Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at $\sqrt{s} =$ 13 TeV , 2018, 1804.01939.

[32]  Robert Harlander,et al.  Higgs production and decay: analytic results at next-to-leading order QCD , 2005 .

[33]  Andrea Benaglia,et al.  Search for resonant pair production of Higgs bosons decaying to two bottom quark-antiquark pairs in proton-proton collisions at 8 TeV , 2015 .

[34]  M. P. Casado,et al.  Search for heavy ZZ resonances in the ℓ ⁺ℓ ⁻ℓ ⁺ℓ⁻ and ℓ ⁺ℓ ⁻νν̄ final states using proton–proton collisions at √s̅= 13 TeV with the ATLAS detector , 2018 .

[35]  Stefania Gori,et al.  Closing the Wedge: Search Strategies for Extended Higgs Sectors with Heavy Flavor Final States , 2016, 1602.02782.

[36]  J. Gunion,et al.  The Higgs Hunter's Guide , 1990 .

[37]  Robert V. Harlander,et al.  SusHi: A program for the calculation of Higgs production in gluon fusion and bottom-quark annihilation in the Standard Model and the MSSM , 2012, Comput. Phys. Commun..

[38]  N. Shah,et al.  Two Higgs doublets and a complex singlet: disentangling the decay topologies and associated phenomenology , 2018, Journal of High Energy Physics.

[39]  S. Jana,et al.  Enhanced di-Higgs production in the two Higgs doublet model , 2018, Journal of High Energy Physics.

[40]  K. Freese,et al.  The NMSSM is within reach of the LHC: mass correlations & decay signatures , 2019, Journal of High Energy Physics.

[41]  Vernon Barger,et al.  Azimuthal Correlations in Top Pair Decays and The Effects of New Heavy Scalars , 2011, 1112.5173.

[42]  Howard E. Haber,et al.  The CP-conserving two-Higgs-doublet model: the approach to the decoupling limit , 2003 .

[43]  Cms Collaborations Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC $pp$ collision data at $\sqrt{s}=$ 7 and 8 TeV , 2016 .

[44]  P. Slavich,et al.  NLO QCD bottom corrections to Higgs boson production in the MSSM , 2010, 1007.3465.

[45]  Lukasz Zwalinski,et al.  Search for pair production of Higgs bosons in the b b b b final state using proton-proton collisions at s =13 TeV with the ATLAS detector SEARCH for PAIR PRODUCTION of HIGGS BOSONS in ⋯ M. AABOUD et al. , 2016 .

[46]  S. Willenbrock,et al.  Higgs decay to top quarks at hadron colliders , 1994 .

[47]  Howard E. Haber,et al.  Alignment limit of the NMSSM Higgs sector , 2015, 1510.09137.

[48]  C. Collaboration Combined measurements of Higgs boson couplings in proton–proton collisions at $$\sqrt{s}=13\,\text {Te}\text {V} $$ , 2018, The European Physical Journal C.

[49]  W. Keung,et al.  Can vanishing mass-on-shell interactions generate a dip at colliders? , 2015 .