Active bone marrow S-values for the low-energy electron emitter terbium-161 compared to S-values for lutetium-177 and yttrium-90

[1]  A. Lubas,et al.  Early Complications of Radioisotope Therapy with Lutetium-177 and Yttrium-90 in Patients with Neuroendocrine Neoplasms—A Preliminary Study , 2022, Journal of clinical medicine.

[2]  S. Walrand,et al.  Renal and Red Marrow Dosimetry in Peptide Receptor Radionuclide Therapy: 20 Years of History and Ahead , 2021, International journal of molecular sciences.

[3]  P. Bernhardt,et al.  Dosimetric Analysis of the Short-Ranged Particle Emitter 161Tb for Radionuclide Therapy of Metastatic Prostate Cancer , 2021, Cancers.

[4]  F. Borgna,et al.  Simultaneous Visualization of 161Tb- and 177Lu-Labeled Somatostatin Analogues Using Dual-Isotope SPECT Imaging , 2021, Pharmaceutics.

[5]  R. Baum,et al.  First-in-Humans Application of 161Tb: A Feasibility Study Using 161Tb-DOTATOC , 2021, The Journal of Nuclear Medicine.

[6]  E. Hindié,et al.  Radiation doses from 161Tb and 177Lu in single tumour cells and micrometastases , 2020, EJNMMI Physics.

[7]  Francesc Salvat,et al.  PenNuc: Monte Carlo simulation of the decay of radionuclides , 2019, Comput. Phys. Commun..

[8]  R. Schibli,et al.  Terbium-161 for PSMA-targeted radionuclide therapy of prostate cancer , 2019, European Journal of Nuclear Medicine and Molecular Imaging.

[9]  P. Bernhardt,et al.  Bone Marrow Absorbed Doses and Correlations with Hematologic Response During 177Lu-DOTATATE Treatments Are Influenced by Image-Based Dosimetry Method and Presence of Skeletal Metastases , 2019, The Journal of Nuclear Medicine.

[10]  S. Fraser,et al.  The iron islands: Erythroblastic islands and iron metabolism. , 2019, Biochimica et biophysica acta. General subjects.

[11]  S. Vandenberghe,et al.  A dosimetry procedure for organs-at-risk in 177Lu peptide receptor radionuclide therapy of patients with neuroendocrine tumours. , 2018, Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics.

[12]  H. Lundqvist,et al.  Prospective observational study of 177Lu-DOTA-octreotate therapy in 200 patients with advanced metastasized neuroendocrine tumours (NETs): feasibility and impact of a dosimetry-guided study protocol on outcome and toxicity , 2018, European Journal of Nuclear Medicine and Molecular Imaging.

[13]  H. Köstler,et al.  Quantification of fat fraction in lumbar vertebrae: correlation with age and implications for bone marrow dosimetry in molecular radiotherapy , 2018, Physics in medicine and biology.

[14]  Jean-Mathieu Beauregard,et al.  Personalized 177Lu-octreotate peptide receptor radionuclide therapy of neuroendocrine tumours: a simulation study , 2016, European Journal of Nuclear Medicine and Molecular Imaging.

[15]  W. Bolch,et al.  Depth‐dependent concentrations of hematopoietic stem cells in the adult skeleton: Implications for active marrow dosimetry , 2017, Medical physics.

[16]  J. Berlin,et al.  Phase 3 Trial of 177Lu‐Dotatate for Midgut Neuroendocrine Tumors , 2017, The New England journal of medicine.

[17]  W. Bolch,et al.  Quantitative impact of changes in marrow cellularity, skeletal size, and bone mineral density on active marrow dosimetry based upon a reference model , 2017, Medical physics.

[18]  P. Bernhardt,et al.  A novel planar image-based method for bone marrow dosimetry in 177Lu-DOTATATE treatment correlates with haematological toxicity , 2016, EJNMMI Physics.

[19]  E. Hindié,et al.  Comparison between Three Promising ß-emitting Radionuclides, 67Cu, 47Sc and 161Tb, with Emphasis on Doses Delivered to Minimal Residual Disease , 2016, Theranostics.

[20]  E. Hindié,et al.  Dose Deposits from 90Y, 177Lu, 111In, and 161Tb in Micrometastases of Various Sizes: Implications for Radiopharmaceutical Therapy , 2016, The Journal of Nuclear Medicine.

[21]  W. Bolch,et al.  An image-based skeletal dosimetry model for the ICRP reference adult female—internal electron sources , 2016, Physics in medicine and biology.

[22]  E. Krenning,et al.  Subacute haematotoxicity after PRRT with 177Lu-DOTA-octreotate: prognostic factors, incidence and course , 2015, European Journal of Nuclear Medicine and Molecular Imaging.

[23]  Eva Forssell-Aronsson,et al.  Renal function affects absorbed dose to the kidneys and haematological toxicity during 177Lu-DOTATATE treatment , 2015, European Journal of Nuclear Medicine and Molecular Imaging.

[24]  F. R. Rosendaal,et al.  Fundamental , 2015, Journal of thrombosis and haemostasis : JTH.

[25]  Francesc Salvat,et al.  The PENELOPE code system. Specific features and recent improvements , 2015, ICS 2014.

[26]  G. Bydder,et al.  Fat composition changes in bone marrow during chemotherapy and radiation therapy. , 2014, International journal of radiation oncology, biology, physics.

[27]  E. Fischer,et al.  Anti-L1CAM radioimmunotherapy is more effective with the radiolanthanide terbium-161 compared to lutetium-177 in an ovarian cancer model , 2014, European Journal of Nuclear Medicine and Molecular Imaging.

[28]  I. Drozdov,et al.  Long-term tolerability of PRRT in 807 patients with neuroendocrine tumours: the value and limitations of clinical factors , 2014, European Journal of Nuclear Medicine and Molecular Imaging.

[29]  R. Schibli,et al.  Direct in vitro and in vivo comparison of 161Tb and 177Lu using a tumour-targeting folate conjugate , 2014, European Journal of Nuclear Medicine and Molecular Imaging.

[30]  H. Biersack,et al.  Long-Term Hematotoxicity After Peptide Receptor Radionuclide Therapy with 177Lu-Octreotate , 2013, The Journal of Nuclear Medicine.

[31]  G. Poston,et al.  Peptide receptor radionuclide therapy with 90Y-DOTATATE/90Y-DOTATOC in patients with progressive metastatic neuroendocrine tumours: assessment of response, survival and toxicity , 2013, British Journal of Cancer.

[32]  G. Guglielmi Osteoporosis and bone densitometry measurements , 2013 .

[33]  J. Griffith Bone Marrow Changes in Osteoporosis , 2013 .

[34]  E. Krenning,et al.  Lutetium-labelled peptides for therapy of neuroendocrine tumours , 2012, European Journal of Nuclear Medicine and Molecular Imaging.

[35]  M. Ferrari,et al.  Peptide receptor radionuclide therapy with 177Lu-DOTATATE: the IEO phase I-II study , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[36]  Perry B. Johnson,et al.  An image-based skeletal dosimetry model for the ICRP reference adult male—internal electron sources , 2011, Physics in medicine and biology.

[37]  Raffaella Barone,et al.  Experimental facts supporting a red marrow uptake due to radiometal transchelation in 90Y-DOTATOC therapy and relationship to the decrease of platelet counts , 2011, European Journal of Nuclear Medicine and Molecular Imaging.

[38]  E. Fischer,et al.  The low-energy β(-) and electron emitter (161)Tb as an alternative to (177)Lu for targeted radionuclide therapy. , 2010, Nuclear medicine and biology.

[39]  Carlo Chiesa,et al.  EANM Dosimetry Committee guidelines for bone marrow and whole-body dosimetry , 2010, European Journal of Nuclear Medicine and Molecular Imaging.

[40]  Choonsik Lee,et al.  An image-based skeletal dosimetry model for the ICRP reference newborn—internal electron sources , 2010, Physics in medicine and biology.

[41]  C. Bodet-Milin,et al.  Three methods assessing red marrow dosimetry in lymphoma patients treated with radioimmunotherapy , 2010, Cancer.

[42]  Daniel Lodwick,et al.  The UF family of reference hybrid phantoms for computational radiation dosimetry , 2010, Physics in medicine and biology.

[43]  W. Bolch,et al.  Spatial gradients of blood vessels and hematopoietic stem and progenitor cells within the marrow cavities of the human skeleton. , 2009, Blood.

[44]  Marion de Jong,et al.  Bone marrow dosimetry in peptide receptor radionuclide therapy with [177Lu-DOTA0,Tyr3]octreotate , 2009, European Journal of Nuclear Medicine and Molecular Imaging.

[45]  J. Valentin,et al.  Nuclear decay data for dosimetric calculations , 2009 .

[46]  K. Eckerman,et al.  User guide to the ICRP CD and the DECDATA software , 2008 .

[47]  Giovanni Paganelli,et al.  Long-term evaluation of renal toxicity after peptide receptor radionuclide therapy with 90Y-DOTATOC and 177Lu-DOTATATE: the role of associated risk factors , 2008, European Journal of Nuclear Medicine and Molecular Imaging.

[48]  K Eckerman,et al.  ICRP Publication 107. Nuclear decay data for dosimetric calculations. , 2008, Annals of the ICRP.

[49]  I Kawrakow,et al.  Skeletal dosimetry in the MAX06 and the FAX06 phantoms for external exposure to photons based on vertebral 3D-microCT images , 2006, Physics in medicine and biology.

[50]  Ping Chung Leung,et al.  Vertebral bone mineral density, marrow perfusion, and fat content in healthy men and men with osteoporosis: dynamic contrast-enhanced MR imaging and MR spectroscopy. , 2005, Radiology.

[51]  Michael G Stabin,et al.  OLINDA/EXM: the second-generation personal computer software for internal dose assessment in nuclear medicine. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[52]  Raffaella Barone,et al.  Practical dosimetry of peptide receptor radionuclide therapy with (90)Y-labeled somatostatin analogs. , 2005, Journal of nuclear medicine : official publication, Society of Nuclear Medicine.

[53]  L. Mosekilde,et al.  Adipocyte tissue volume in bone marrow is increased with aging and in patients with osteoporosis , 2004, Biogerontology.

[54]  J. Valentin Basic anatomical and physiological data for use in radiological protection: reference values , 2002, Annals of the ICRP.

[55]  Eva Forssell-Aronsson,et al.  Dosimetric comparison of radionuclides for therapy of somatostatin receptor-expressing tumors. , 2001, International journal of radiation oncology, biology, physics.

[56]  D. Gao,et al.  Fundamental cryobiology of human hematopoietic progenitor cells. I: Osmotic characteristics and volume distribution. , 1998, Cryobiology.

[57]  F. Spiers A review of the theoretical and experimental methods of determining radiation dose in bone. , 1966, The British journal of radiology.