A radioaerosol scanning technique measuring regional clearance of sodium pertechnetate (99mTcO-4) and 99mTc-labeled diethylenetriaminepentaacetate (99mTc-DTPA) was used to assess changes in canine pulmonary epithelial permeability following lung irradiation. Doses of 2,000 cGy (11 dogs), 1,000 cGy (2 dogs), and 500 cGy (2 dogs) were given in one fraction to either the entire right hemithorax (500 cGy) or the right lower lung (1,000 and 2,000 cGy). Radioaerosol scans, chest roentgenograms, and computerized tomograms (CT) were obtained before and serially after irradiation. A dose of 2,000 cGy resulted in a decrease in regional pulmonary epithelial permeability to both 99mTcO4- and 99mTc-DTPA; both showed significant decreases from the 2nd wk postirradiation onward. In comparison, CT and chest roentgenogram did not become abnormal until 7.1 +/- 2.8 (SD) and 8.2 +/- 2.6 wk, respectively. Doses of 1,000 and 500 cGy produced reversible decreases in 99mTcO4- clearance. Lung morphology showed definite changes of radiation pneumonitis after 2,000 and 1,000 cGy but not after 500 cGy at approximately 9, 17, and 12 wk postirradiation, respectively. These results suggest that dose-dependent changes in pulmonary physiology may precede obvious structural alterations in radiation lung injury.