Tensor Network Skeletonization

We introduce a new coarse-graining algorithm, tensor network skeletonization, for the numerical computation of tensor networks. This approach utilizes a structure-preserving skeletonization procedure to remove short-range correlations effectively at every scale. This approach is first presented in the setting of 2D statistical Ising model and is then extended to higher dimensional tensor networks and disordered systems. When applied to the Euclidean path integral formulation, this approach also gives rise to new efficient representations of the ground states for 1D and 2D quantum Ising models.

[1]  Xiao-Gang Wen,et al.  Tensor-Entanglement-Filtering Renormalization Approach and Symmetry Protected Topological Order , 2009, 0903.1069.

[2]  E. M.,et al.  Statistical Mechanics , 2021, Manual for Theoretical Chemistry.

[3]  Shuo Yang,et al.  Loop Optimization for Tensor Network Renormalization. , 2015, Physical review letters.

[4]  Michael Levin,et al.  Tensor renormalization group approach to two-dimensional classical lattice models. , 2006, Physical review letters.

[5]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[6]  Z. Y. Xie,et al.  Second renormalization of tensor-network states. , 2008, Physical review letters.

[7]  F. Verstraete,et al.  Renormalization algorithms for Quantum-Many Body Systems in two and higher dimensions , 2004, cond-mat/0407066.

[8]  Glen Evenbly,et al.  Algorithms for tensor network renormalization , 2015, 1509.07484.

[9]  White,et al.  Density matrix formulation for quantum renormalization groups. , 1992, Physical review letters.

[10]  G. Evenbly,et al.  Tensor Network Renormalization. , 2014, Physical review letters.

[11]  G. Vidal Entanglement renormalization. , 2005, Physical review letters.

[12]  西森 秀稔 Statistical physics of spin glasses and information processing : an introduction , 2001 .

[13]  G. Evenbly,et al.  Algorithms for entanglement renormalization , 2007, 0707.1454.

[14]  Yu. M. Zinoviev,et al.  Spontaneous Magnetization in the Two-Dimensional Ising Model , 2003 .

[15]  Z. Y. Xie,et al.  Coarse-graining renormalization by higher-order singular value decomposition , 2012, 1201.1144.

[16]  G. Evenbly,et al.  Tensor Network Renormalization Yields the Multiscale Entanglement Renormalization Ansatz. , 2015, Physical review letters.

[17]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[18]  H. Nishimori Statistical Physics of Spin Glasses and Information Processing , 2001 .

[19]  Yu-An Chen,et al.  Density matrix renormalization group , 2014 .

[20]  Roman Orus,et al.  A Practical Introduction to Tensor Networks: Matrix Product States and Projected Entangled Pair States , 2013, 1306.2164.