Fault-tolerant architectures for superconducting qubits

In this short review, I draw attention to new developments in the theory of fault tolerance in quantum computation that may give concrete direction to future work in the development of superconducting qubit systems. The basics of quantum error correction codes, which I will briefly review, have not significantly changed since their introduction fifteen years ago. But an interesting picture has emerged of an efficient use of these codes that may put fault tolerant operation within reach. It is now understood that two dimensional surface codes, close relatives of the original toric code of Kitaev, can be adapted to effectively perform logical gate operations in a very simple planar architecture, with error thresholds for fault tolerant operation simulated to be 0.75%. This architecture uses topological ideas in its functioning, but it is not 'topological quantum computation' -- there are no non-abelian anyons in sight. I offer some speculations on the crucial pieces of superconducting hardware that could be demonstrated in the next couple of years that would be clear stepping stones towards this surface-code architecture.

[1]  Robert Raussendorf,et al.  Fault-tolerant quantum computation with high threshold in two dimensions. , 2007, Physical review letters.

[2]  M. Mariantoni,et al.  Two-resonator circuit quantum electrodynamics : A superconducting quantum switch , 2007, 0712.2522.

[3]  J. Cirac,et al.  Simulations of quantum double models , 2009, 0901.1345.

[4]  Barbara M. Terhal,et al.  Fault-tolerant quantum computation for local non-Markovian noise , 2005 .

[5]  DiVincenzo Two-bit gates are universal for quantum computation. , 1994, Physical review. A, Atomic, molecular, and optical physics.

[6]  N. Mermin Quantum Computer Science: An Introduction , 2007 .

[7]  Timothy F. Havel,et al.  EXPERIMENTAL QUANTUM ERROR CORRECTION , 1998, quant-ph/9802018.

[8]  John Preskill,et al.  Quantum accuracy threshold for concatenated distance-3 codes , 2006, Quantum Inf. Comput..

[9]  P.O. Boykin,et al.  Threshold error penalty for fault-tolerant quantum computation with nearest neighbor communication , 2006, IEEE Transactions on Nanotechnology.

[10]  L. DiCarlo,et al.  Demonstration of two-qubit algorithms with a superconducting quantum processor , 2009, Nature.

[11]  Michael A. Nielsen,et al.  Noise thresholds for optical cluster-state quantum computation (26 pages) , 2006 .

[12]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[13]  Dorit Aharonov,et al.  Fault-tolerant quantum computation with constant error , 1997, STOC '97.

[14]  A. Kitaev Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[15]  Michael H. Freedman,et al.  Projective Plane and Planar Quantum Codes , 2001, Found. Comput. Math..

[16]  A. G. Fowler,et al.  Threshold error rates for the toric and surface codes , 2009, 0905.0531.

[17]  S Lloyd,et al.  A Potentially Realizable Quantum Computer , 1993, Science.

[18]  B. Terhal,et al.  A no-go theorem for a two-dimensional self-correcting quantum memory based on stabilizer codes , 2008, 0810.1983.

[19]  Andrew W. Cross,et al.  A comparative code study for quantum fault tolerance , 2007, Quantum Inf. Comput..

[20]  A. M. Stephens,et al.  Accuracy threshold for concatenated error detection in one dimension , 2009, 0902.2658.

[21]  D. Bruß,et al.  OPTIMAL EAVESDROPPING ON NOISY STATES IN QUANTUM KEY DISTRIBUTION , 2008, 0804.0587.

[22]  S. Lloyd Envisioning a quantum supercomputer. , 1994, Science.

[23]  John Preskill,et al.  Fault-tolerant computing with biased-noise superconducting qubits: a case study , 2008, 0806.0383.

[24]  Steane,et al.  Simple quantum error-correcting codes. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[25]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[26]  Vwani P. Roychowdhury,et al.  Latency in local, two-dimensional, fault-tolerant quantum computing , 2008, Quantum Inf. Comput..

[27]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[28]  J. Pachos,et al.  Why should anyone care about computing with anyons? , 2007, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[29]  M. A. Martin-Delgado,et al.  Quantum measurements and gates by code deformation , 2007, 0704.2540.

[30]  E. Knill,et al.  Resilient quantum computation: error models and thresholds , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[31]  David P. DiVincenzo,et al.  Noise threshold for a fault-tolerant two-dimensional lattice architecture , 2007, Quantum Inf. Comput..

[32]  A. Fowler,et al.  Long-range coupling and scalable architecture for superconducting flux qubits , 2007, cond-mat/0702620.

[33]  Austin G. Fowler,et al.  Cavity grid for scalable quantum computation with superconducting circuits , 2007, 0706.3625.

[34]  David P. DiVincenzo,et al.  Local fault-tolerant quantum computation , 2005 .

[35]  A. Fowler,et al.  High-threshold universal quantum computation on the surface code , 2008, 0803.0272.

[36]  Robert Raussendorf,et al.  Topological fault-tolerance in cluster state quantum computation , 2007 .

[37]  J. Preskill,et al.  Topological quantum memory , 2001, quant-ph/0110143.

[38]  Daniel Gottesman Fault-tolerant quantum computation with local gates , 2000 .