Network tomography

While conventional tomography is associated to the Radon transform in Euclidean spaces, electrical impedance tomography, or EIT, is associated to the Radon transform in the hyperbolic plane. We discuss some recent work on network tomography that can be associated to a problem similar to EIT on graphs and indicate how in some sense it may be also associated to the Radon transform on trees.

[1]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[2]  S. B. Childs,et al.  INVERSE PROBLEMS IN PARTIAL DIFFERENTIAL EQUATIONS. , 1968 .

[3]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[4]  S. Helgason The Radon Transform , 1980 .

[5]  R. Schoen,et al.  Conformal metrics with prescribed scalar curvature , 1986 .

[6]  F. Natterer The Mathematics of Computerized Tomography , 1986 .

[7]  Edward B Curtis,et al.  Determining the resistors in a network , 1990 .

[8]  Michael Vogelius,et al.  A backprojection algorithm for electrical impedance imaging , 1990 .

[9]  José F. Escobar Uniqueness theorems on conformal deformation of metrics, Sobolev inequalities, and an eigenvalue estimate , 1990 .

[10]  Edward B Curtis,et al.  The Dirichlet to Neumann map for a resistor network , 1991 .

[11]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[12]  JosEi F. Escobar,et al.  Conformal deformation of a Riemannian metric to a scalar flat metric with constant mean curvature on the boundary , 1992 .

[13]  Tamara Munzner,et al.  Visualizing the structure of the World Wide Web in 3D hyperbolic space , 1995, VRML '95.

[14]  Carlos Alberto Berenstein,et al.  Integral Geometry in Hyperbolic Spaces and Electrical Impedance Tomography , 1996, SIAM J. Appl. Math..

[15]  A. Nachman,et al.  Global uniqueness for a two-dimensional inverse boundary value problem , 1996 .

[16]  Fan Chung,et al.  Spectral Graph Theory , 1996 .

[17]  A. Ramm,et al.  The RADON TRANSFORM and LOCAL TOMOGRAPHY , 1996 .

[18]  Sergei Lissianoi,et al.  On the inversion of the geodesic Radon transform on the hyperbolic plane , 1997 .

[19]  Tamara Munzner,et al.  Exploring Large Graphs in 3D Hyperbolic Space , 1998, IEEE Computer Graphics and Applications.

[20]  James A. Morrow,et al.  Circular planar graphs and resistor networks , 1998 .

[21]  S. Mallat A wavelet tour of signal processing , 1998 .

[22]  Gunther Uhlmann,et al.  Developments in inverse problems since Calderon’s foundational paper , 1999 .

[23]  A. ADoefaa,et al.  ? ? ? ? f ? ? ? ? ? , 2003 .

[24]  Soon-Yeong Chung,et al.  Omega-Harmonic Functions and Inverse Conductivity Problems on Networks , 2005, SIAM J. Appl. Math..

[25]  A. Bensoussan,et al.  Difference equations on weighted graphs , 2005 .

[26]  A. Calderón,et al.  On an inverse boundary value problem , 2006 .