EEG Analysis for Assessment of Depth of Anaesthesia

Up to now one unsolved challenge in anaesthesia is the assessment of depth of anaesthesia during surgery. No general purpose on-line monitoring system predicting depth or quality of anaesthesia exists. The analysis of spontaneous (EEG) and evoked electrical brain activities (AEP) leads to methods assessing depth of anaesthesia. A monitor concept was developed consisting of the three functional components EEG recorder, pre-processor and knowledge based discriminator including an inductive learning algorithm generating fuzzy decision trees. By their statistical evaluation feature vectors for training Kohonen networks are selected aplied for re-classification tests of clinical study data.

[1]  E. Kochs,et al.  Electrophysiological Monitoring and Mild Hypothermia , 1995, Journal of neurosurgical anesthesiology.

[2]  N. T. Smith,et al.  Density modulation--a technique for the display of three-variable data in patient monitoring. , 1979, Anesthesiology.

[3]  T. Gasser,et al.  Statistical methods for investigating phase relations in stationary stochastic processes , 1971 .

[4]  Warren D. Smith,et al.  Measuring the Performance of Anesthetic Depth Indicators , 1996, Anesthesiology.

[5]  G N Kenny,et al.  Middle latency auditory evoked potentials during repeated transitions from consciousness to unconsciousness , 1996, Anaesthesia.

[6]  Gholamreza Nakhaeizadeh,et al.  Maschinelle Lernverfahren als Unterstützung beim Wissenserwerb von Diagnose-Expertensystemen , 1993, XPS.

[7]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[8]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[9]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[10]  H.-D. Kochs,et al.  Extraktion relevanter Parameter aus wavelet-transformierten akustisch evozierten Potentialen zur Bestimmung inadäquater Anästhesie mit Hilfe des Kohonen-Netzes , 1996 .

[11]  C Thornton,et al.  Evoked potentials in anaesthesia. , 1991, European journal of anaesthesiology.

[12]  C Thornton,et al.  Monitoring evoked potentials during surgery to assess the level of anaesthesia. , 1995, Journal of medical engineering & technology.

[13]  G Schneider,et al.  Monitoring depth of anaesthesia. , 1997, European journal of anaesthesiology. Supplement.

[14]  Richard Weber,et al.  Fuzzy-ID3: A class of methods for automatic knowledge acquisition , 1992 .

[15]  Yoh-Han Pao,et al.  Adaptive pattern recognition and neural networks , 1989 .

[16]  Krzysztof J. Cios,et al.  Continuous ID3 algorithm with fuzzy entropy measures , 1992, [1992 Proceedings] IEEE International Conference on Fuzzy Systems.

[17]  N. T. Smith,et al.  SPECTRAL EDGE FREQUENCY — A NEW CORRELATE OF ANESTHETIC DEPTH , 1980 .

[18]  V. Samar,et al.  Multiresolution Analysis of Event-Related Potentials by Wavelet Decomposition , 1995, Brain and Cognition.

[19]  Ewald Konecny,et al.  INTEROBSERVER-VARIABILITY FOR EVALUATION OF MIDDLE LATENCY AUDITORY EVOKED POTENTIALS DURING ANESTHESIA , 1998 .