The use of positive and negative penalty functions in solving constrained optimization problems and partial differential equations

[1]  M Levy,et al.  MEMOIRE SUR LA THEORIE DES PLAQUES ELASTIQUES PLANES , 1877 .

[2]  W. Ritz Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. , 1909 .

[3]  R. Courant Variational methods for the solution of problems of equilibrium and vibrations , 1943 .

[4]  Bernard Budiansky,et al.  The Lagrangian Multiplier Method of Finding Upper and Lower Limits to Critical Stresses of Clamped Plates , 1946 .

[5]  G. B. Warburton,et al.  The Vibration of Rectangular Plates , 1954 .

[6]  S. Mikhlin,et al.  Variational Methods in Mathematical Physics , 1965 .

[7]  W. Thomson Theory of vibration with applications , 1965 .

[8]  G. B. Warburton,et al.  Vibration of Box-Type Structures: , 1967 .

[9]  S. M. Dickinson Vibration of Box-Type Structures with Flexible Joints between Constituent Plates , 1968 .

[10]  Solomon G. Mikhlin,et al.  The numerical performance of variational methods , 1971 .

[11]  Earl H. Dowell,et al.  Free vibrations of an arbitrary structure in terms of component modes. , 1972 .

[12]  A. Leissa,et al.  Vibration of shells , 1973 .

[13]  Arthur W. Leissa,et al.  The free vibration of rectangular plates , 1973 .

[14]  Larisse Klein,et al.  Transverse vibrations of non-uniform beams , 1974 .

[15]  S. M. Dickinson,et al.  On the Use of Beam Functions for Problems of Plates Involving Free Edges , 1975 .

[16]  D. J. Gorman Free vibration analysis of the completely free rectangular plate by the method of superposition , 1978 .

[17]  R. Blevins,et al.  Formulas for natural frequency and mode shape , 1984 .

[18]  Yoshihiro Narita,et al.  Vibrations of completely free shallow shells of rectangular planform , 1984 .

[19]  Earl H. Dowell,et al.  On Asymptotic Approximations to Beam Model Shapes , 1984 .

[20]  R. Bhat Natural frequencies of rectangular plates using characteristic orthogonal polynomials in rayleigh-ritz method , 1986 .

[21]  David S. Burnett,et al.  Finite Element Analysis: From Concepts to Applications , 1987 .

[22]  T. Williams Rounding error effects on computed Rayleigh-Ritz estimates , 1987 .

[23]  S. M. Dickinson,et al.  The vibration and post-buckling of geometrically imperfect, simply supported, rectangular plates under uni-axial loading, part I: Theoretical approach , 1987 .

[24]  Haim Baruh,et al.  Another look at admissible functions , 1989 .

[25]  S. M. Dickinson,et al.  On the use of artificial springs in the study of the free vibrations of systems comprised of straight and curved beams , 1992 .

[26]  S. M. Dickinson,et al.  The flexural vibration of rectangular plate systems approached by using artificial springs in the Rayleigh-Ritz method , 1992 .

[27]  Philippe Young,et al.  On The Free Flexural Vibration Of Rectangular Plates With Straight Or Curved Internal Line Supports , 1993 .

[28]  K. M. Liew,et al.  pb-2 Rayleigh- Ritz method for general plate analysis , 1993 .

[29]  S. M. Dickinson,et al.  Further studies on the vibration of plates with curved edges, including complicating effects , 1994 .

[30]  K. M. Liew,et al.  A pb-2 Ritz Formulation for Flexural Vibration of Shallow Cylindrical Shells of Rectangular Planform , 1994 .

[31]  Alejandro L. Garcia Numerical methods for physics , 1994 .

[32]  Rakesh K. Kapania,et al.  COMPARISON OF SIMPLE AND CHEBYCHEV POLYNOMIALS IN RAYLEIGH-RITZ ANALYSIS , 1994 .

[33]  K. M. Liew,et al.  Vibration of perforated doubly-curved shallow shells with rounded corners , 1994 .

[34]  Philippe Young,et al.  Vibration of a class of shallow shells bounded by edges described by polynomials, part I: theoretical approach and validation , 1995 .

[35]  Philippe Young,et al.  Vibration of a class of shallow shells bounded by edges described by polynomials Part II: natural frequency parameters for shallow shells of various different planforms , 1995 .

[36]  C. S. Kim Free vibration of rectangular plates with an arbitrary straight line support , 1995 .

[37]  P.J.M. van der Hoogt,et al.  Accurate calculation methods for natural frequencies of plates with special attention to the higher modes , 1995 .

[38]  R. Bhat EFFECT OF NORMAL MODE CONTENTS IN ASSUMED DEFLECTION SHAPES IN RAYLEIGH-RITZ METHOD , 1996 .

[39]  M. A. De Rosa,et al.  Free vibrations of tapered beams with flexible ends , 1996 .

[40]  Zhou Ding,et al.  NATURAL FREQUENCIES OF RECTANGULAR PLATES USING A SET OF STATIC BEAM FUNCTIONS IN RAYLEIGH-RITZ METHOD , 1996 .

[41]  R. E. Brown,et al.  On the use of polynomial series with the Rayleigh-Ritz method , 1997 .

[42]  Jong-Shyong Wu,et al.  USE OF THE ANALYTICAL-AND-NUMERICAL-COMBINED METHOD IN THE FREE VIBRATION ANALYSIS OF A RECTANGULAR PLATE WITH ANY NUMBER OF POINT MASSES AND TRANSLATIONAL SPRINGS , 1997 .

[43]  Marco Amabili,et al.  Analysis of vibrating circular plates having non-uniform constraints using the modal properties of free-edge plates : Application to bolted plates , 1997 .

[44]  S. M. Dickinson,et al.  THE FREE VIBRATION OF THIN RECTANGULAR PLANFORM SHALLOW SHELLS WITH SLITS , 1997 .

[45]  Jong-Shyong Wu,et al.  FREE VIBRATION ANALYSIS OF A CANTILEVER BEAM CARRYING ANY NUMBER OF ELASTICALLY MOUNTED POINT MASSES WITH THE ANALYTICAL-AND-NUMERICAL-COMBINED METHOD , 1998 .

[46]  Mark A. Bradford,et al.  Numerical convergence of simple and orthogonal polynomials for the unilateral plate buckling problem using the Rayleigh-Ritz method , 1999 .

[47]  Marco Amabili,et al.  A TECHNIQUE FOR THE SYSTEMATIC CHOICE OF ADMISSIBLE FUNCTIONS IN THE RAYLEIGH–RITZ METHOD , 1999 .

[48]  S. M. Dickinson,et al.  ASYMPTOTIC MODELLING OF RIGID BOUNDARIES AND CONNECTIONS IN THE RAYLEIGH–RITZ METHOD , 1999 .

[49]  D. J. Gorman,et al.  Vibration Analysis of Plates by the Superposition Method , 1999 .

[50]  Clarence W. de Silva,et al.  Vibration: Fundamentals and Practice , 1999 .

[51]  Marta B. Rosales,et al.  Arbitrary precision frequencies of a free rectangular thin plate , 2000 .

[52]  Rakesh K. Kapania,et al.  Static and Vibration Analyses of General Wing Structures Using Equivalent-Plate Models , 2000 .

[53]  W. L. Li FREE VIBRATIONS OF BEAMS WITH GENERAL BOUNDARY CONDITIONS , 2000 .

[54]  Igor A. Karnovsky,et al.  Formulas for Structural Dynamics: Tables, Graphs and Solutions , 2000 .

[55]  Philippe Young,et al.  APPLICATION OF A THREE-DIMENSIONAL SHELL THEORY TO THE FREE VIBRATION OF SHELLS ARBITRARILY DEEP IN ONE DIRECTION , 2000 .

[56]  Gui-Rong Liu,et al.  a Mesh-Free Method for Static and Free Vibration Analyses of Thin Plates of Complicated Shape , 2001 .

[57]  D. Logan A First Course in the Finite Element Method , 2001 .

[58]  E. Ventsel,et al.  Thin Plates and Shells: Theory: Analysis, and Applications , 2001 .

[59]  W. L. Li,et al.  A FOURIER SERIES METHOD FOR THE VIBRATIONS OF ELASTICALLY RESTRAINED PLATES ARBITRARILY LOADED WITH SPRINGS AND MASSES , 2002 .

[60]  W. L. Li COMPARISON OF FOURIER SINE AND COSINE SERIES EXPANSIONS FOR BEAMS WITH ARBITRARY BOUNDARY CONDITIONS , 2002 .

[61]  Sinniah Ilanko,et al.  The use of negative penalty functions in constrained variational problems , 2002 .

[62]  Sinniah Ilanko,et al.  EXISTENCE OF NATURAL FREQUENCIES OF SYSTEMS WITH ARTIFICIAL RESTRAINTS AND THEIR CONVERGENCE IN ASYMPTOTIC MODELLING , 2002 .

[63]  Sinniah Ilanko,et al.  The use of asymptotic modelling in vibration and stability analysis of structures , 2003 .

[64]  W. L. Li Vibration analysis of rectangular plates with general elastic boundary supports , 2004 .

[65]  Sinniah Ilanko Asymptotic modelling theorems for the static analysis of linear elastic structures , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[66]  O. C. Zienkiewicz,et al.  The Finite Element Method: Its Basis and Fundamentals , 2005 .

[67]  Sinniah Ilanko,et al.  Introducing the use of positive and negative inertial functions in asymptotic modelling , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[68]  L. V. Kurpa,et al.  Solution of vibration problems for shallow shells of arbitrary form by the R-function method , 2005 .

[69]  On the bounds of Gorman's superposition method of free vibration analysis , 2006 .

[70]  Frederick Ward Williams,et al.  The use of the reciprocals of positive and negative inertial functions in asymptotic modelling , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[71]  Rakesh K. Kapania,et al.  Flexural-torsional coupled vibration of slewing beams using various types of orthogonal polynomials , 2006 .

[72]  Harm Askes,et al.  The use of negative penalty functions in linear systems of equations , 2006, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[73]  Dinar Camotim,et al.  Lateral-torsional buckling of singly symmetric web-tapered thin-walled I-beams: 1D model vs. shell FEA , 2007 .

[74]  Frederic Ward Williams,et al.  Wittrick–Williams algorithm proof of bracketing and convergence theorems for eigenvalues of constrained structures with positive and negative penalty parameters , 2008 .

[75]  Earl H. Dowell,et al.  Free vibration of a cantilevered beam with multiple steps: Comparison of several theoretical methods with experiment , 2008 .

[76]  Marco Amabili,et al.  Nonlinear Vibrations and Stability of Shells and Plates , 2008 .

[77]  Arthur W. Leissa,et al.  Vibration analysis of rectangular plates with side cracks via the Ritz method , 2009 .

[78]  Jingtao Du,et al.  An exact series solution for the transverse vibration of rectangular plates with general elastic boundary supports , 2009 .

[79]  Arthur W. Leissa,et al.  Vibration of Plates , 2021, Solid Acoustic Waves and Vibration.