유전자 알고리즘 기반 최적 다항식 뉴럴네트워크 연구 및 비선형 공정으로의 응용
暂无分享,去创建一个
본 논문은 최적 탐색 알고리즘인 유전자 알고리즘을 이용하여 다항식 뉴럴네트워크(Polynomial Neural Networks : PNN)의 최적 설계가 그 목적이다. 기존의 다항식 뉴럴네트워크는 확장된 GMDH(Group Method of Data Handling) 방법에 기반을 두며, 네트워크의 성장과정을 통하여 각 층의 다항식뉴런(혹은 노드)에서 고정된 (설계자에 의해 미리 선택된) 노드 입력들의 수뿐만 아니라 다항식 차수(l차, 2차, 그리고 수정된 2차식)를 이용하였다. 더구나, 그 방법은 학습을 통해 생성된 PNN이 최적 네트워크 구조를 가진다는 것을 보증하지 못한다. 그러나, 제안된 GA-based PNN 모델은 다음의 파라미터들-즉 입력변수의 수, 입력변수, 및 다항식 차수-을 유전자 알고리즘을 이용하여 선택 동조함으로써 그 구조를 구조적으로 더 최적화된 네트워크가 되도록 하고, 기존의 PNN보다 훨씬 더 유연하고, 선호된 뉴럴 네트워크가 되도록 한다. 하중계수를 가진 합성성능지수가 그 모델의 근사화 및 일반화(예측) 능력 사이의 상호 균형을 얻기 위해 제안된다. GA-based PNN의 성능을 평가하기 위해 그 모델은 가스 터빈 발전소의 NOx 배출 공정 데이터로 실험된다. 비교해석은 제안된 GA-based PNN이 앞서 나타난 다른 지능모델보다 더 우수한 예측능력뿐만 아니라 높은 정확성을 가진 모델임을 보인다.