Limit velocity and zero--one laws for diffusions in random environment

We prove that multidimensional diffusions in random environment have a limiting velocity which takes at most two different values. Further, in the two-dimensional case we show that for any direction, the probability to escape to infinity in this direction equals either zero or one. Combined with our results on the limiting velocity, this implies a strong law of large numbers in two dimensions.

[1]  Alain-Sol Sznitman,et al.  On a Class Of Transient Random Walks in Random Environment , 2001 .

[2]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[3]  On the Zero-One Law and the Law of Large Numbers for Random Walk in Mixing Random Environment , 2005 .

[4]  A. Sznitman An effective criterion for ballistic behavior of random walks in random environment , 2002 .

[5]  Alain-Sol Sznitman,et al.  A law of large numbers for random walks in random environment , 1999 .

[6]  D. Gilbarg,et al.  Elliptic Partial Differential Equa-tions of Second Order , 1977 .

[7]  T. Komorowski,et al.  On homogenization of time-dependent random flows , 2001 .

[8]  Ofer Zeitouni,et al.  A law of large numbers for random walks in random mixing environments , 2002, math/0205296.

[9]  On the Existence of Invariant Measure for Lagrangian Velocity in Compressible Environments , 2002 .

[10]  Franz Merkl,et al.  A Zero-One Law for Planar Random walks in Random Environment , 2001 .

[11]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[12]  ON STATIONARITY OF LAGRANGIAN OBSERVATIONS OF PASSIVE TRACER VELOCITY IN A COMPRESSIBLE ENVIRONMENT. , 2004, math/0503534.

[13]  Pierre Bernard,et al.  Lectures on probability theory , 1994 .

[14]  R. Durrett Probability: Theory and Examples , 1993 .

[15]  D. W. Stroock,et al.  Multidimensional Diffusion Processes , 1979 .

[16]  S. Molchanov Lectures on random media , 1994 .

[17]  H. Osada Homogenization of diffusion processes with random stationary coefficients , 1983 .

[18]  S. Kalikow,et al.  GENERALIZED RANDOM WALK IN A RANDOM ENVIRONMENT , 1981 .

[19]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[20]  K. Oelschlager,et al.  Homogenization of a Diffusion Process in a Divergence-Free Random Field , 1988 .

[21]  Tom Schmitz Diffusions in random environment and ballistic behavior , 2006 .

[22]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[23]  Firas Rassoul-Agha The point of view of the particle on the law of large numbers for random walks in a mixing random environment , 2002 .

[24]  S. Resnick Adventures in stochastic processes , 1992 .

[25]  R. Bass Diffusions and Elliptic Operators , 1997 .

[26]  C. Landim,et al.  Convection–diffusion equation with space–time ergodic random flow , 1998 .

[27]  M. Zerner,et al.  A NON-BALLISTIC LAW OF LARGE NUMBERS FOR RANDOM WALKS IN I.I.D. RANDOM ENVIRONMENT , 2002 .

[28]  Timo Seppäläinen,et al.  An almost sure invariance principle for random walks in a space-time random environment , 2004, math/0411602.

[29]  Srinivasa Varadhan,et al.  Large deviations for random walks in a random environment , 2003 .

[30]  Alain-Sol Sznitman,et al.  Slowdown estimates and central limit theorem for random walks in random environment , 2000 .

[31]  A. Friedman Stochastic Differential Equations and Applications , 1975 .

[32]  S. Olla Homogenization of di usion processes in random fields , 1994 .

[33]  Gregory F. Lawler,et al.  Weak convergence of a random walk in a random environment , 1982 .

[34]  Ofer Zeitouni,et al.  Gaussian fluctuations for random walks in random mixing environments , 2005 .

[35]  Stationarity of Lagrangian Velocity¶in Compressible Environments , 2002 .

[36]  W. H. Williams,et al.  Probability Theory and Mathematical Statistics , 1964 .

[37]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[38]  S. Kozlov,et al.  The method of averaging and walks in inhomogeneous environments , 1985 .

[39]  O. Zeitouni,et al.  On the diffusive behavior of isotropic diffusions in a random environment , 2004 .