Type theories, toposes and constructive set theory: predicative aspects of AST

Abstract We introduce a predicative version of topos (stratified pseudotopos) based on the notion of small maps in algebraic set theory, developed by Joyal and one of the authors. Examples of stratified pseudotoposes can be constructed in Martin-Lof type theory, which is a predicative theory. A stratified pseudotopos admits construction of the internal category of sheaves, which is again a stratified pseudotopos. We also show how to build models of Aczel-Myhill constructive set theory using this categorical structure.

[1]  S. Lane,et al.  Sheaves In Geometry And Logic , 1992 .

[2]  Alex K. Simpson Elementary axioms for categories of classes , 1999, Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158).

[3]  John R. Myhill,et al.  Constructive set theory , 1975, Journal of Symbolic Logic.

[4]  Carsten Butz Bernays–Gödel type theory , 2003 .

[5]  Per Martin-Löf,et al.  Intuitionistic type theory , 1984, Studies in proof theory.

[6]  Giovanni Sambin,et al.  Twenty-five years of constructive type theory. , 1998 .

[7]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[8]  Erik Palmgren,et al.  Wellfounded trees in categories , 2000, Ann. Pure Appl. Log..

[9]  Carsten Butz Bernays-G&odel type theory , 2003 .

[10]  Robert Paré,et al.  Stacks and equivalence of indexed categories , 1979 .

[11]  Peter Aczel,et al.  The Type Theoretic Interpretation of Constructive Set Theory: Inductive Definitions , 1986 .

[12]  Thierry Coquand,et al.  Intuitionistic choice and classical logic , 2000, Arch. Math. Log..

[13]  H. Friedman Some applications of Kleene's methods for intuitionistic systems , 1973 .

[14]  J. Paris,et al.  The Type Theoretic Interpretation of Constructive Set Theory , 1978 .

[15]  P. Aczel,et al.  Notes on constructive set theory , 1997 .

[16]  Ieke Moerdijk,et al.  Algebraic set theory , 1995 .

[17]  Nax Paul Mendler,et al.  Predictive type universes and primitive recursion , 1991, [1991] Proceedings Sixth Annual IEEE Symposium on Logic in Computer Science.

[18]  A. R. D. Mathias,et al.  Cambridge Summer School in Mathematical Logic , 1973 .

[19]  M. Hofmann,et al.  The groupoid interpretation of type theory , 1998 .

[20]  Per Martin-Löuf About Models for Intuitionistic Type Theories and the Notion of Definitional Equality , 1975 .