Recent Developments in Bulk Thermoelectric Materials
暂无分享,去创建一个
George S. Nolas | Mercouri G. Kanatzidis | M. Kanatzidis | G. Nolas | Joesph Poon | Joe Poon | J. Poon
[1] Terry M. Tritt,et al. Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C , 2006 .
[2] S. Yamanaka,et al. Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity , 2005 .
[3] Kuei-Fang Hsu,et al. Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. , 2005, Journal of the American Chemical Society.
[4] Takashi Goto,et al. Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni) , 2005 .
[5] A. Bentien,et al. Transport properties of composition tuned α- and β-Eu8Ga16-xGe30+x , 2005 .
[6] T. Inoue,et al. Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance: I. Physical properties and thermoelectric performance , 2004 .
[7] Sven Lidin,et al. The Structure of α-Zn4Sb3 : Ordering of the Phonon-Glass Thermoelectric Material β-Zn4Sb3 , 2004 .
[8] G. J. Snyder,et al. Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3: a combined maximum entropy method X-ray electron density and ab initio electronic structure study. , 2004, Chemistry.
[9] G. Meisner,et al. Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds , 2004 .
[10] G. J. Snyder,et al. Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties , 2004, Nature materials.
[11] K. Ito,et al. Effects of in-doping on the thermoelectric properties of β-Zn4Sb3 , 2004 .
[12] D. Rowe,et al. Solid solution formation in the Zn4Sb3–Cd4Sb3 system , 2004 .
[13] S. Ur,et al. Thermoelectric properties of Zn4Sb3 directly synthesized by hot pressing , 2004 .
[14] M. Kanatzidis,et al. A new thermoelectric material: CsBi4Te6. , 2004, Journal of the American Chemical Society.
[15] M. Dehmas,et al. High temperature transport properties of partially filled CaxCo4Sb12 skutterudites , 2004 .
[16] M. Kanatzidis,et al. Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.
[17] David J. Singh,et al. Electronic structure and transport in type-I and type-VIII clathrates containing strontium, barium, and europium , 2003 .
[18] M. P. Walsh,et al. Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.
[19] M. Kanatzidis,et al. Highly anisotropic crystal growth and thermoelectric properties of K2Bi8−xSbxSe13 solid solutions: Band gap anomaly at low x , 2002 .
[20] Naresh N. Thadhani,et al. Grain structure effects on the lattice thermal conductivity of Ti-based half-Heusler alloys , 2002 .
[21] C. Uher,et al. Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12Ba0.3Co4Sb12 doped with Ni , 2002 .
[22] C. Uher,et al. Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni , 2002 .
[23] Qiang Shen,et al. Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds , 2001 .
[24] H. Metiu,et al. Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30,Sr8Ga16Ge30,Ba8Ga16Si30, and Ba8In16Sn30 , 2001 .
[25] R. Venkatasubramanian,et al. Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.
[26] H. J. Goldsmid,et al. Boundary Scattering and the Thermoelectric Figure of Merit , 2001 .
[27] J. Teubner,et al. High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. , 2001, Physical review letters.
[28] J. Moodera,et al. Half Metallic Magnets , 2001 .
[29] S. Poon,et al. Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1−xSbx , 2000 .
[30] Yves Campidelli,et al. Electroluminescence of Ge'Si self-assembled quantum dots grown by chemical vapor deposition , 2000 .
[31] S. Poon,et al. Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases , 2000 .
[32] D. Rowe,et al. Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds , 2000 .
[33] Uher,et al. CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.
[34] George S. Nolas,et al. SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .
[35] C. Goldmann,et al. Efficient dopants for ZrNiSn-based thermoelectric materials , 1999 .
[36] Hylan B. Lyon,et al. Thermoelectric materials 1998 -- The next generation materials for small-scale refrigeration and power generation applications , 1998 .
[37] George S. Nolas,et al. Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .
[38] M. A. Kouacou,et al. Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration , 1998 .
[39] C. Uher,et al. CERIUM FILLING AND DOPING OF COBALT TRIANTIMONIDE , 1997 .
[40] Seong-Gon Kim,et al. First-principles study of Zn-Sb thermoelectrics , 1997, cond-mat/9709148.
[41] Jean-Pierre Fleurial,et al. Preparation and thermoelectric properties of semiconducting Zn4Sb3 , 1997 .
[42] M. Kanatzidis,et al. Oligomerization Versus Polymerization of Texn- in the Polytelluride Compound BaBiTe3. Structural Characterization, Electronic Structure, and Thermoelectric Properties , 1997 .
[43] M. Kanatzidis,et al. Synthesis and Thermoelectric Properties of the New Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13 , 1996 .
[44] R. K. Williams,et al. Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.
[45] A. Borshchevsky,et al. High figure of merit in Ce-filled skutterudites , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.
[46] D. Rowe. CRC Handbook of Thermoelectrics , 1995 .
[47] Rabe,et al. Band gap and stability in the ternary intermetallic compounds NiSnM (M=Ti,Zr,Hf): A first-principles study. , 1994, Physical review. B, Condensed matter.
[48] G. A. Slack,et al. Some properties of semiconducting IrSb3 , 1994 .
[49] Mildred S. Dresselhaus,et al. Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials , 1993 .
[50] K. Schubert,et al. Über einige phasen der Mischungen ZnSbN und CdSbN , 1978 .
[51] Terry M. Tritt,et al. Recent trends in thermoelectric materials research , 2001 .
[52] George S. Nolas,et al. Thermoelectrics: Basic Principles and New Materials Developments , 2001 .
[53] G. Poon,et al. Chapter 2 Electronic and thermoelectric properties of Half-Heusler alloys , 2001 .
[54] M. Kanatzidis,et al. Molten Salt Synthesis and Properties of Three New Solid-State Ternary Bismuth Chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13 , 1993 .