Recent Developments in Bulk Thermoelectric Materials

Good thermoelectric materials possess low thermal conductivity while maximizing electric carrier transport. This article looks at various classes of materials to understand their behavior and determine methods to modify or “tune” them to optimize their thermoelectric properties. Whether it is the use of “rattlers” in cage structures such as skutterudites, or mixed-lattice atoms such as the complex half-Heusler alloys, the ability to manipulate the thermal conductivity of a material is essential in optimizing its properties for thermoelectric applications.

[1]  Terry M. Tritt,et al.  Effect of substitutions on the thermoelectric figure of merit of half-Heusler phases at 800 °C , 2006 .

[2]  S. Yamanaka,et al.  Ag9TlTe5: A high-performance thermoelectric bulk material with extremely low thermal conductivity , 2005 .

[3]  Kuei-Fang Hsu,et al.  Nanostructuring, compositional fluctuations, and atomic ordering in the thermoelectric materials AgPb(m)SbTe(2+m). The myth of solid solutions. , 2005, Journal of the American Chemical Society.

[4]  Takashi Goto,et al.  Synthesis and thermoelectric properties of p-type- and n-type-filled skutterudite RyMxCo4−xSb12(R:Ce,Ba,Y;M:Fe,Ni) , 2005 .

[5]  A. Bentien,et al.  Transport properties of composition tuned α- and β-Eu8Ga16-xGe30+x , 2005 .

[6]  T. Inoue,et al.  Optimization of hot-press conditions of Zn4Sb3 for high thermoelectric performance: I. Physical properties and thermoelectric performance , 2004 .

[7]  Sven Lidin,et al.  The Structure of α-Zn4Sb3 : Ordering of the Phonon-Glass Thermoelectric Material β-Zn4Sb3 , 2004 .

[8]  G. J. Snyder,et al.  Interstitial Zn atoms do the trick in thermoelectric zinc antimonide, Zn4Sb3: a combined maximum entropy method X-ray electron density and ab initio electronic structure study. , 2004, Chemistry.

[9]  G. Meisner,et al.  Strain field fluctuation effects on lattice thermal conductivity of ZrNiSn-based thermoelectric compounds , 2004 .

[10]  G. J. Snyder,et al.  Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties , 2004, Nature materials.

[11]  K. Ito,et al.  Effects of in-doping on the thermoelectric properties of β-Zn4Sb3 , 2004 .

[12]  D. Rowe,et al.  Solid solution formation in the Zn4Sb3–Cd4Sb3 system , 2004 .

[13]  S. Ur,et al.  Thermoelectric properties of Zn4Sb3 directly synthesized by hot pressing , 2004 .

[14]  M. Kanatzidis,et al.  A new thermoelectric material: CsBi4Te6. , 2004, Journal of the American Chemical Society.

[15]  M. Dehmas,et al.  High temperature transport properties of partially filled CaxCo4Sb12 skutterudites , 2004 .

[16]  M. Kanatzidis,et al.  Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit , 2004, Science.

[17]  David J. Singh,et al.  Electronic structure and transport in type-I and type-VIII clathrates containing strontium, barium, and europium , 2003 .

[18]  M. P. Walsh,et al.  Quantum Dot Superlattice Thermoelectric Materials and Devices , 2002, Science.

[19]  M. Kanatzidis,et al.  Highly anisotropic crystal growth and thermoelectric properties of K2Bi8−xSbxSe13 solid solutions: Band gap anomaly at low x , 2002 .

[20]  Naresh N. Thadhani,et al.  Grain structure effects on the lattice thermal conductivity of Ti-based half-Heusler alloys , 2002 .

[21]  C. Uher,et al.  Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12Ba0.3Co4Sb12 doped with Ni , 2002 .

[22]  C. Uher,et al.  Thermoelectric properties of the n-type filled skutterudite Ba0.3Co4Sb12 doped with Ni , 2002 .

[23]  Qiang Shen,et al.  Effects of partial substitution of Ni by Pd on the thermoelectric properties of ZrNiSn-based half-Heusler compounds , 2001 .

[24]  H. Metiu,et al.  Band structures and thermoelectric properties of the clathrates Ba8Ga16Ge30,Sr8Ga16Ge30,Ba8Ga16Si30, and Ba8In16Sn30 , 2001 .

[25]  R. Venkatasubramanian,et al.  Thin-film thermoelectric devices with high room-temperature figures of merit , 2001, Nature.

[26]  H. J. Goldsmid,et al.  Boundary Scattering and the Thermoelectric Figure of Merit , 2001 .

[27]  J. Teubner,et al.  High performance thermoelectric Tl9BiTe6 with an extremely low thermal conductivity. , 2001, Physical review letters.

[28]  J. Moodera,et al.  Half Metallic Magnets , 2001 .

[29]  S. Poon,et al.  Effect of Sb doping on the thermoelectric properties of Ti-based half-Heusler compounds, TiNiSn1−xSbx , 2000 .

[30]  Yves Campidelli,et al.  Electroluminescence of Ge'Si self-assembled quantum dots grown by chemical vapor deposition , 2000 .

[31]  S. Poon,et al.  Thermoelectric properties of semimetallic (Zr, Hf)CoSb half-Heusler phases , 2000 .

[32]  D. Rowe,et al.  Preparation and thermoelectric properties of A8IIB16IIIB30IV clathrate compounds , 2000 .

[33]  Uher,et al.  CsBi(4)Te(6): A high-performance thermoelectric material for low-temperature applications , 2000, Science.

[34]  George S. Nolas,et al.  SKUTTERUDITES : A phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications , 1999 .

[35]  C. Goldmann,et al.  Efficient dopants for ZrNiSn-based thermoelectric materials , 1999 .

[36]  Hylan B. Lyon,et al.  Thermoelectric materials 1998 -- The next generation materials for small-scale refrigeration and power generation applications , 1998 .

[37]  George S. Nolas,et al.  Semiconducting Ge clathrates: Promising candidates for thermoelectric applications , 1998 .

[38]  M. A. Kouacou,et al.  Crossover from semiconductor to magnetic metal in semi-Heusler phases as a function of valence electron concentration , 1998 .

[39]  C. Uher,et al.  CERIUM FILLING AND DOPING OF COBALT TRIANTIMONIDE , 1997 .

[40]  Seong-Gon Kim,et al.  First-principles study of Zn-Sb thermoelectrics , 1997, cond-mat/9709148.

[41]  Jean-Pierre Fleurial,et al.  Preparation and thermoelectric properties of semiconducting Zn4Sb3 , 1997 .

[42]  M. Kanatzidis,et al.  Oligomerization Versus Polymerization of Texn- in the Polytelluride Compound BaBiTe3. Structural Characterization, Electronic Structure, and Thermoelectric Properties , 1997 .

[43]  M. Kanatzidis,et al.  Synthesis and Thermoelectric Properties of the New Ternary Bismuth Sulfides KBi6.33S10 and K2Bi8S13 , 1996 .

[44]  R. K. Williams,et al.  Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials , 1996, Science.

[45]  A. Borshchevsky,et al.  High figure of merit in Ce-filled skutterudites , 1996, Fifteenth International Conference on Thermoelectrics. Proceedings ICT '96.

[46]  D. Rowe CRC Handbook of Thermoelectrics , 1995 .

[47]  Rabe,et al.  Band gap and stability in the ternary intermetallic compounds NiSnM (M=Ti,Zr,Hf): A first-principles study. , 1994, Physical review. B, Condensed matter.

[48]  G. A. Slack,et al.  Some properties of semiconducting IrSb3 , 1994 .

[49]  Mildred S. Dresselhaus,et al.  Use of quantum‐well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials , 1993 .

[50]  K. Schubert,et al.  Über einige phasen der Mischungen ZnSbN und CdSbN , 1978 .

[51]  Terry M. Tritt,et al.  Recent trends in thermoelectric materials research , 2001 .

[52]  George S. Nolas,et al.  Thermoelectrics: Basic Principles and New Materials Developments , 2001 .

[53]  G. Poon,et al.  Chapter 2 Electronic and thermoelectric properties of Half-Heusler alloys , 2001 .

[54]  M. Kanatzidis,et al.  Molten Salt Synthesis and Properties of Three New Solid-State Ternary Bismuth Chalcogenides, β-CsBiS2, γ-CsBiS2, and K2Bi8Se13 , 1993 .